Patents by Inventor Alan Garen

Alan Garen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8388974
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: March 5, 2013
    Assignee: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Publication number: 20120082686
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Application
    Filed: November 7, 2011
    Publication date: April 5, 2012
    Applicant: YALE UNIVERSITY
    Inventors: Alan GAREN, Zhiwei HU
  • Patent number: 8071104
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 6, 2011
    Assignee: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Publication number: 20110117114
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Application
    Filed: December 23, 2010
    Publication date: May 19, 2011
    Applicant: YALE UNIVERSITY
    Inventors: Alan GAREN, Zhiwei HU
  • Patent number: 7887809
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 15, 2011
    Assignee: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Patent number: 7858092
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: December 28, 2010
    Assignee: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Publication number: 20080206227
    Abstract: Methods and compositions are provided for the treatment of diseases such as exudative macular degeneration, diabetic retinopathy, retinopathy of prematurity, choroidal neovascularization, retinal neovascularization, iris neovascularization, corneal neovascularization, ocular tumors, and other disorders of the eye, cancer, and inflammatory disorders. The method involves administering a conjugate, referred to as fVIIPD, containing a photosensitizer and a targeting molecule such as factor VII (“fVII”), fVIIa, or modified fVII, which binds with high affinity and specificity to tissue factor (TF). TF is more highly expressed, abnormally expressed or specifically expressed on endothelial cells lining the luminal surface of pathological neovasculature, than on normal vasculature, thus providing a specific and accessible therapeutic target.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 28, 2008
    Inventors: Alan Garen, Zhiwei Hu
  • Publication number: 20060052286
    Abstract: Methods and compositions are provided for the treatment of diseases such as exudative macular degeneration, diabetic retinopathy, retinopathy of prematurity, choroidal neovascularization, retinal neovascularization, iris neovascularization, corneal neovascularization, ocular tumors, and other disorders of the eye, cancer, and inflammatory disorders. The method involves administering a conjugate, referred to as fVIIPD, containing a photosensitizer and a targeting molecule such as factor VII (“fVII”), fVIIa, or modified fVII, which binds with high affinity and specificity to tissue factor (TF). TF is more highly expressed, abnormally expressed or specifically expressed on endothelial cells lining the luminal surface of pathological neovasculature, than on normal vasculature, thus providing a specific and accessible therapeutic target.
    Type: Application
    Filed: August 15, 2005
    Publication date: March 9, 2006
    Inventors: Alan Garen, Ron Adelman, Zhiwei Hu
  • Publication number: 20050214298
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Application
    Filed: May 23, 2005
    Publication date: September 29, 2005
    Applicant: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Patent number: 6924359
    Abstract: Immunoconjugates for treating diseases associated with neovascularization such as cancer, rheumatoid arthritis, the exudative form of macular degeneration, and atherosclerosis are described. The immunoconjugates typically consist of the Fc region of a human IgG1 immunoglobulin including the hinge, or other effector domain or domains that can elicit, when administered to a patient, a cytolytic immune response or cytotoxic effect against a targeted cell. The effector domain is conjugated to a targeting domain which comprises a factor VII mutant that binds with high affinity and specificity to tissue factor but does not initiate blood clotting such as factor VII having a substitution of alanine for lysine-341 or of alanine for serine-344.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: August 2, 2005
    Assignee: Yale University
    Inventors: Alan Garen, Zhiwei Hu
  • Patent number: 6140470
    Abstract: Human monoclonal anti-tumor antibodies are isolated from fusion phage single-chain Fv and V.sub.H antibody libraries constructed from the peripheral blood lymphocytes of immunized cancer patients. Antibodies that bind to tumor cells of the same kind as the patient's are selected, and antibodies that also bind to a human normal cell type are removed. The remaining fusion phage antibodies are cloned and then are tested for binding to at least two normal human cell types. Antibodies that fail to bind to the normal cells are further tested for binding to a panel of tumor cells, typically including the original tumor type and several related and unrelated tumors. Human monoclonal antibodies that bind specifically to the original tumor or also to some other tumors, or that bind to the original tumor and cells from the same developmental lineage, are obtained and sequenced. The selected antibodies can be used to design molecules which are potentially useful for various diagnostic and therapeutic purposes.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: October 31, 2000
    Assignee: Yale University
    Inventors: Alan Garen, Xiaohang Cai