Patents by Inventor Alan H. Zacher

Alan H. Zacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9404063
    Abstract: A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: August 2, 2016
    Assignees: Battelle Memorial Institute, Genifuel Corporation
    Inventors: Douglas C. Elliott, Todd R. Hart, Gary G. Neuenschwander, James R. Oyler, Leslie J. Rotness, Jr., Andrew J. Schmidt, Alan H. Zacher
  • Publication number: 20150126758
    Abstract: A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Applicants: GENIFUEL CORPORATION, BATTELLE MEMORIAL INSTITUTE
    Inventors: Douglas C. Elliott, Todd R. Hart, Gary G. Neuenschwander, James R. Oyler, Leslie J. Rotness, JR., Andrew J. Schmidt, Alan H. Zacher
  • Patent number: 9012699
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: April 21, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20150094498
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John G. Frye, Jr., Aaron A. Oberg, Alan H. Zacher
  • Patent number: 8937202
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 20, 2015
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Aaron A. Oberg, Alan H. Zacher
  • Patent number: 8907135
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: December 9, 2014
    Assignee: Battelle Memorial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Publication number: 20140249335
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Application
    Filed: May 9, 2014
    Publication date: September 4, 2014
    Applicant: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Patent number: 8754266
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 17, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20130253231
    Abstract: Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Battelle Memorial Institute
    Inventors: Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Publication number: 20130253227
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 26, 2013
    Applicant: Battelle Momerial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 8530703
    Abstract: The present disclosure relates to facilities, systems, methods and/or catalysts for use in chemical production. In particular, the disclosure provides innovations relating to dehydration of multihydric compounds such as glycerol to form acrolein. Some of these innovations include continuous reaction systems as well as system parameters that allow for long term production.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: September 10, 2013
    Assignee: Battelle Memorial Institute
    Inventors: James J. Strohm, Alan H. Zacher, James F. White, Michel J. Gray, Vanessa Lebarbier
  • Patent number: 8501963
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 8241605
    Abstract: Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: August 14, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Douglas C. Elliott, Robert Scott Butner, Gary G. Neuenschwander, Alan H. Zacher, Todd R. Hart
  • Publication number: 20110306780
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 15, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110263874
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110257419
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110207971
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: John G. Frye, Aaron A. Oberg, Alan H. Zacher
  • Publication number: 20110207972
    Abstract: Catalysts for replacing rhenium-containing multimetallic catalysts for the hydrogenolysis of organic compounds to desired polyols, including the conversion of glycerol to propylene glycol, are described. The catalysts are carried on carbon supports, as well as carbon supports impregnated with Zirconium Scandium (ZrSc), Zirconium Yttrium (ZrY), Titanium Scandium (TiSc), or Titanium Yttrium (TiY) to texture the carbon support and to create oxygen-ion vacancies that can be used during the desired reactions. Processes for the hydrogenolysis of organic compounds to desired polyols using the disclosed catalysts, including the conversion of glycerol to propylene glycol, are also described.
    Type: Application
    Filed: February 23, 2010
    Publication date: August 25, 2011
    Inventors: Heather M. Brown, John G. Frye, Jonathan L. Male, Daniel M. Santosa, Alan H. Zacher
  • Patent number: 7994347
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: August 9, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, Jr., Alan H. Zacher
  • Patent number: 7973177
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methylpyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 5, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher