Patents by Inventor Alan Hubbard

Alan Hubbard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957921
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 16, 2024
    Assignee: PACESETTER, INC.
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Publication number: 20210178169
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 17, 2021
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Patent number: 10960217
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 30, 2021
    Assignee: PACESETTER, INC.
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Publication number: 20180280703
    Abstract: Disclosed herein is a delivery system for delivering a leadless pacemaker. The delivery system may include a catheter, which may be a guide catheter. The catheter includes a distal end, a proximal end opposite the distal end, a lumen extending between the distal end and the proximal end, and a locking hub operably coupled to the proximal end. The locking hub includes a lumen segment of the lumen. In one implementation, self-biasing of the lumen segment places the lumen segment out of alignment with a rest of the lumen. Deflecting the lumen segment against the self-biasing of the lumen segment places the lumen segment in coaxial alignment with the rest of the lumen. In another implementation, self-biasing of the lumen segment reduces an inner diameter of the lumen segment and actuation of the locking hub expands the inner diameter.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 4, 2018
    Inventors: Brett Hillukka, Thomas B. Eby, Christopher Alan Hubbard, Bernhard Arnar, Bradley Knippel, Jeremiah Blue, Jennifer Heisel, Rebecca Stufft, Adam Weber
  • Patent number: 9808617
    Abstract: An active implantable medical device is disclosed herein having a radio-opaque marker. The radio-opaque marker can be formed within an exterior wall of the device or within recesses on the outside of the exterior wall. The implantable medical device can be a leadless pacemaker. The shape of the radio-opaque marker can be designed to facilitate visualization and identification of the location, orientation, and rotation of the implanted medical device by conventional fluoroscopy. Methods of use are also disclosed.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 7, 2017
    Assignee: Pacesetter, Inc.
    Inventors: Alan Ostroff, Paul Paspa, Peter M. Jacobson, Wade A. Keller, Christopher Alan Hubbard
  • Publication number: 20150367157
    Abstract: A system, method, apparatus, and computer program product for testing a vehicle fire suppression system are disclosed. A method may include testing components of the vehicle fire suppression system. The method may additionally include providing test results for each tested component.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Inventors: Michael Lawrence Rohlik, Kenneth Alan Hubbard, John Emmett Bevins
  • Publication number: 20140058494
    Abstract: An active implantable medical device is disclosed herein having a radio-opaque marker. The radio-opaque marker can be formed within an exterior wall of the device or within recesses on the outside of the exterior wall. The implantable medical device can be a leadless pacemaker. The shape of the radio-opaque marker can be designed to facilitate visualization and identification of the location, orientation, and rotation of the implanted medical device by conventional fluoroscopy. Methods of use are also disclosed.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: Nanostim, Inc.
    Inventors: Alan Ostroff, Paul Paspa, Peter M. Jacobson, Wade A. Keller, Christopher Alan Hubbard
  • Patent number: 6964856
    Abstract: Methods for selecting a candidate drug for treating sepsis are disclosed. The methods involve labeling a sepsis-causing pathogen with a reporter and monitoring the progress of infection by detecting levels of the reporter in animals treated with test compounds or drugs. The comparisons may be made between experimental and control animals, as well as within a single animal or group of animals. Also disclosed is a method for predicting an expected time of death of an experimental animal in a model system of sepsis using data generated in the initial part of the experiment.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: November 15, 2005
    Assignee: Xenogen Corporation
    Inventors: Carole Bellinger-Kawahara, Pamela R. Contag, Alan Hubbard
  • Publication number: 20030203418
    Abstract: Methods for selecting a candidate drug for treating sepsis are disclosed. The methods involve labeling a sepsis-causing pathogen with a reporter and monitoring the progress of infection by detecting levels of the reporter in animals treated with test compounds or drugs. The comparisons may be made between experimental and control animals, as well as within a single animal or group of animals. Also disclosed is a method for predicting an expected time of death of an experimental animal in a model system of sepsis using data generated in the initial part of the experiment.
    Type: Application
    Filed: May 15, 2003
    Publication date: October 30, 2003
    Inventors: Carole Bellinger-Kawahara, Pamela R. Contag, Alan Hubbard
  • Patent number: 6610503
    Abstract: Methods for selecting a candidate drug for treating sepsis are disclosed. The methods involve labeling a sepsis-causing pathogen with a reporter and monitoring the progress of infection by detecting levels of the reporter in animals treated with test compounds or drugs. The comparisons may be made between experimental and control animals, as well as within a single animal or group of animals. Also disclosed is a method for predicting an expected time of death of an experimental animal in a model system of sepsis using data generated in the initial part of the experiment.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: August 26, 2003
    Assignee: Xenogen Corporation
    Inventors: Carole Bellinger-Kawahara, Pamela R Contag, Alan Hubbard