Patents by Inventor Alan Jonathan King

Alan Jonathan King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220172198
    Abstract: An example operation may include one or more of receiving, via a payment network, a request to detokenize a payment token to process a payment transaction between a source and a target, detokenizing the payment token based on mapping data stored in a token vault, transmitting information about the detokenized payment token to a computing device associated with the request, generating a settlement token that comprises identifiers of the source and the target and an identifier of the payment token, and transmitting the settlement token to a blockchain on a blockchain settlement network which is parallel to the payment network.
    Type: Application
    Filed: November 28, 2020
    Publication date: June 2, 2022
    Inventors: Nitin Gaur, Alan Jonathan King, Sean Dunne, Dulce B. Ponceleon
  • Patent number: 10685319
    Abstract: A simulator is configured to simulate the fulfillment of orders by nodes. Each node has an inventory of products and is capable of shipping the products to destinations in response to receipt of a corresponding order. The simulator divides the nodes into groups and assigns a different priority to each group based on input provided by a user to the simulator to generate an ordered sequence of priorities. The simulator maintains safety stock data corresponding to each node that indicates minimum quantities of the products required to be present at the corresponding node. The simulator selects a current priority of the sequence and next simulates a first group among the groups having the current priority fulfilling the orders for a given product among the products while a quantity of the given product at each of the nodes in the first group is below the minimum quantity in the corresponding safety stock data.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: June 16, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: JoAnn Piersa Brereton, Ajay Ashok Deshpande, Arun Hampapur, Miao He, Alan Jonathan King, Xuan Liu, Christopher Scott Milite, Jae-Eun Park, Joline Ann Villaranda Uichanco, Songhua Xing, Steve Igrejas, Hongliang Fei, Vadiraja Ramamurthy, Yingjie Li, Kimberly D. Hendrix, Xiao Bo Zheng
  • Patent number: 10679178
    Abstract: A simulator is configured to simulate the fulfillment of orders by nodes. Each node has an inventory of products and is capable of shipping the products to destinations in response to receipt of a corresponding order. The simulator divides the nodes into groups and assigns a different priority to each group based on input provided by a user to the simulator to generate an ordered sequence of priorities. The simulator maintains safety stock data corresponding to each node that indicates minimum quantities of the products required to be present at the corresponding node. The simulator selects a current priority of the sequence and next simulates a first group among the groups having the current priority fulfilling the orders for a given product among the products while a quantity of the given product at each of the nodes in the first group is below the minimum quantity in the corresponding safety stock data.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: JoAnn Piersa Brereton, Ajay Ashok Deshpande, Arun Hampapur, Miao He, Alan Jonathan King, Xuan Liu, Christopher Scott Milite, Jae-Eun Park, Joline Ann Villaranda Uichanco, Songhua Xing, Steve Igrejas, Hongliang Fei, Vadiraja Ramamurthy, Yingjie Li, Kimberly D. Hendrix, Xiao Bo Zheng
  • Publication number: 20160110735
    Abstract: A simulator is configured to simulate the fulfillment of orders by nodes. Each node has an inventory of products and is capable of shipping the products to destinations in response to receipt of a corresponding order. The simulator divides the nodes into groups and assigns a different priority to each group based on input provided by a user to the simulator to generate an ordered sequence of priorities. The simulator maintains safety stock data corresponding to each node that indicates minimum quantities of the products required to be present at the corresponding node. The simulator selects a current priority of the sequence and next simulates a first group among the groups having the current priority fulfilling the orders for a given product among the products while a quantity of the given product at each of the nodes in the first group is below the minimum quantity in the corresponding safety stock data.
    Type: Application
    Filed: December 1, 2015
    Publication date: April 21, 2016
    Inventors: JoAnn Piersa Brereton, Ajay Ashok Deshpande, Arun Hampapur, Miao He, Alan Jonathan King, Xuan Liu, Christopher Scott Milite, Jae-Eun Park, Joline Ann Villaranda Uichanco, Songhua Xing, Steve Igrejas, Hongliang Fei, Vadiraja Ramamurthy, Yingjie Li, Kimberly D. Hendrix, Xiao Bo Zheng
  • Publication number: 20160110681
    Abstract: A simulator is configured to simulate the fulfillment of orders by nodes. Each node has an inventory of products and is capable of shipping the products to destinations in response to receipt of a corresponding order. The simulator divides the nodes into groups and assigns a different priority to each group based on input provided by a user to the simulator to generate an ordered sequence of priorities. The simulator maintains safety stock data corresponding to each node that indicates minimum quantities of the products required to be present at the corresponding node. The simulator selects a current priority of the sequence and next simulates a first group among the groups having the current priority fulfilling the orders for a given product among the products while a quantity of the given product at each of the nodes in the first group is below the minimum quantity in the corresponding safety stock data.
    Type: Application
    Filed: October 13, 2015
    Publication date: April 21, 2016
    Inventors: JoAnn Piersa Brereton, Ajay Ashok Deshpande, Arun Hampapur, Miao He, Alan Jonathan King, Xuan Liu, Christopher Scott Milite, Jae-Eun Park, Joline Ann Villaranda Uichanco, Songhua Xing, Steven lgrejas, Hongliang Fei, Vadiraja Ramamurthy, Yingjie Li, Kimberly D. Hendrix, Xiao Bo Zheng
  • Patent number: 7246080
    Abstract: An apparatus, system and method for managing supply chain risk are provided. The apparatus, system and method identify which components are most critical to the assembly of the final product, in terms of placing the largest amount of revenue or profit at risk. The impact on profit and revenue of the failure to effectively deliver one or more of these critical products along one or more of the dimensions of quantity, time, space, or quality, is then quantified. The revenue and profit distribution from the supply chain is characterized given a projected distribution supply uncertainty, taking into consideration that input products are only useful if all of the BOM components are present. The revenue at risk is then determined. From the set of possible final products that can be produced, the portfolio of final products with the best risk-return characteristics are determined. Efficient hedges may then be developed.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: July 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: Stuart Irwin Feldman, William Grey, Alan Jonathan King, Richard Perret, Dailun H. Shi
  • Publication number: 20020188496
    Abstract: An apparatus, system and method for managing supply chain risk are provided. The apparatus, system and method identify which components are most critical to the assembly of the final product, in terms of placing the largest amount of revenue or profit at risk. The impact on profit and revenue of the failure to effectively deliver one or more of these critical products along one or more of the dimensions of quantity, time, space, or quality, is then quantified. The revenue and profit distribution from the supply chain is characterized given a projected distribution supply uncertainty, taking into consideration that input products are only useful if all of the BOM components are present. The revenue at risk is then determined. From the set of possible final products that can be produced, the portfolio of final products with the best risk-return characteristics are determined. Efficient hedges may then be developed.
    Type: Application
    Filed: June 8, 2001
    Publication date: December 12, 2002
    Applicant: International Business Machines Coporation
    Inventors: Stuart Irwin Feldman, William Grey, Alan Jonathan King, Richard Perret, Dailun H. Shi