Patents by Inventor Alan KOEHLER

Alan KOEHLER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230403007
    Abstract: A method of operating a capacitive sensing device that includes a capacitive sensor having at least one sense electrode, a measurement signal source for providing an alternating electric measurement signal with at least three fixed predefined signal frequencies to the at least one sense electrode, and an impedance measurement circuit for determining an unknown complex impedance of the at least one sense electrode from a response to the provided electric measurement signal.
    Type: Application
    Filed: November 24, 2021
    Publication date: December 14, 2023
    Inventors: Thomas FABER, Frank ALTHAUS, Thomas MEYERS, Oliver LION, Laurent LAMESCH, Michael PÜTZ, Alan KOEHLER
  • Publication number: 20230026131
    Abstract: A method for occupancy detection for at least one vehicle seat, using at least one transmit antenna and a plurality of receive antennas, includes: emitting a detection signal with each transmit antenna onto at least one vehicle seat, which detection signal is a frequency-modulated continuous-wave radar signal, and receiving with each receive antenna a reflected signal; recording sample data representing the reflected signal, the sample data having M channels, with M=N1·N2, where N1 is the number of transmit antennas and N2 is the number of receive antennas; for each channel, removing a component from the sample data that corresponds to a reflection from a static object; and applying a frequency estimation method to the sample data to at least implicitly determine at least one angle of arrival ?i corresponding to a position of an occupant on a vehicle seat.
    Type: Application
    Filed: December 15, 2020
    Publication date: January 26, 2023
    Inventors: Janine CORDIE, Andreas DIEWALD, Oscar GOMEZ, Alan KOEHLER, Jochen LANDWEHR, Parth Raj SINGH
  • Patent number: 9744499
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: August 29, 2017
    Assignee: LG NANOH2O, INC.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 9597642
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B?, where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: March 21, 2017
    Assignee: LG NANOH2O, INC.
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth
  • Patent number: 9254465
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: February 9, 2016
    Assignee: LG NANOH2O, INC.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Publication number: 20160030897
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Application
    Filed: October 8, 2015
    Publication date: February 4, 2016
    Inventors: Christopher James KURTH, Jeffrey Alan KOEHLER, Meijuan ZHOU, Brett Anderson HOLMBERG, Robert Leon BURK
  • Publication number: 20140329010
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B?, where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 6, 2014
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth
  • Publication number: 20140295079
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8801935
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B? where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 12, 2014
    Assignee: NanoH2O, Inc.
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth
  • Publication number: 20140050846
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: NanoH2O, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8603340
    Abstract: A process for preparing a reverse osmosis membrane that includes (A) providing a polyamine, a polyfunctional acid halide, and mono-hydrolyzed trimesoyl chloride; (B) combining the polyamine, polyfunctional acid halide, and mono-hydrolyzed trimesoyl chloride on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acyl halide on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the mono-hydrolyzed trimesoyl chloride.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 10, 2013
    Assignee: NanoH2O, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8567612
    Abstract: RO membranes using chlorinated water as a feed stream maybe protected from damage by the chlorine with a protective layer including reactive nitrogen which forms chloromines on the surface of the membrane that reduce chlorine penetration. This protective layer also provides substantial anti-fouling capabilities, whether used with a chlorinated or unchlorinated feed stream because the chloramines are anti-bacterial. Although chlorine is lost in use, the anti-fouling layer or coating can be recharged with additional chlorine without damaging the discrimination layer. The anti-fouling layer or coating may be advantageously used with Thin film composite, TFC, membranes for use in forward and reverse osmosis may include nanoparticles, monohydrolyzed and/or di-hydrolyzed TMC, and/or alkaline earth alkaline metal complexes or other additives.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: October 29, 2013
    Assignee: NanoH2O, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Publication number: 20120285890
    Abstract: A process for preparing a reverse osmosis membrane that includes: (A) providing a polyamine, a polyfunctional acid halide, and a flux increasing additive having the formula Z+B? where Z+ is an easily dissociable cation and B? is a beta-diketonate; (B) combining the polyamine, polyfunctional acid halide, and flux increasing additive on the surface of a porous support membrane; and (C) interfacially polymerizing the polyamine and the polyfunctional acid halide, and flux increasing additive on the surface of the porous support membrane to form a reverse osmosis membrane comprising (i) the porous support membrane and (ii) a discrimination layer comprising a polyamide. The reverse osmosis membrane is characterized by a flux that is greater than the flux of the same membrane prepared in the absence of the flux increasing additive.
    Type: Application
    Filed: November 10, 2011
    Publication date: November 15, 2012
    Inventors: Jeffrey Alan Koehler, Christopher James Kurth
  • Publication number: 20120261344
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 18, 2012
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Patent number: 8177978
    Abstract: An interfacial polymerization process (IFP) for preparing a highly permeable TFC RO membrane by contacting on a porous support membrane for IFP, a polyfunctional acyl halide monomer and a polyamine monomer and recovering a highly permeable thin film (TFC) reverse osmosis (RO) membrane. At least one of solutions may contain nanoparticle additives which may release ions into solution and at least one of the solutions may contain additional ions from a second additive. The presence of the nanoparticle additives during IFP may increase the hydrophilicity and/or permeability of the recovered membrane compared to a control membrane. The presence of the additional ions from the second additive may also increase the permeability of the recovered membrane.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 15, 2012
    Assignee: NanoH20, Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Publication number: 20100062156
    Abstract: Reverse osmosis membranes made by interfacial polymerization of a monomer in a nonpolar (e.g. organic) phase together with a monomer in a polar (e.g. aqueous) phase on a porous support membrane. Interfacial polymerization process is disclosed for preparing a highly permeable RO membrane, comprising: contacting on a porous support membrane, a) a first solution containing 1,3-diaminobenzene, and b) a second solution containing trimesoyl chloride, wherein at least one of solutions a) and b) contains nanoparticles when said solutions are first contacted, and recovering a highly permeable RO membrane.
    Type: Application
    Filed: April 15, 2009
    Publication date: March 11, 2010
    Applicant: NanoH+hu 2+l O, Inc. NanoH+hu 2+l O Inc.
    Inventors: Christopher James Kurth, Jeffrey Alan Koehler, Meijuan Zhou, Brett Anderson Holmberg, Robert Leon Burk
  • Publication number: 20100031540
    Abstract: Publications (e.g., calendars) and methods of manufacturing same are set forth herein. A publication according to an embodiment includes a plurality of flexible pages operatively coupled together along a spine. The pages are of generally equal size, and a substrate is operatively coupled to the pages. A stiff sheet is coupled to the substrate, and the stiff sheet and substrate are collectively of generally equal size as the pages. The substrate is configured for removal from the pages. According to another embodiment, a wall calendar to be shipped and retailed without individual packaging includes a plurality of sheets having indicia and being coupled together along a spine. A substrate is coupled to the sheets along the spine, and a stiff sheet is coupled to the substrate. The substrate is configured for complete removal from the pages after retail. The wall calendar is never individually wrapped before being sold at retail.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 11, 2010
    Inventor: Clifford Alan Koehler
  • Publication number: 20040086964
    Abstract: The present invention relates to a method for the preparation of a Neutrophil Inhibitory Factor (NIF) comprising the cultivation of mammalian cells expressing NIF in an animal component-free growth medium. The present invention may be employed in large-scale preparation of NIF. The invention also relates to a method for the preparation of recombinant proteins comprising the cultivation of mammalian cells expressing an exogenous recombinant protein in an animal component-free growth medium.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 6, 2004
    Inventors: Stefanie Beate Pluschkell, Roderick William Geldart, Lewis Ho, Mark Alan Koehler, Centenary Afam Okediadi, Stephen Joseph Pias, Marie Meiying Zhu, Steven Joseph Hawrylik, Matthew Moyle
  • Publication number: 20020099183
    Abstract: The present invention relates to a method for the preparation of a Neutrophil Inhibitory Factor (NIF) comprising the cultivation of mammalian cells expressing NIF in an animal component-free growth medium. The present invention may be employed in large-scale preparation of NIF. The invention also relates to a method for the preparation of recombinant proteins comprising the cultivation of mammalian cells expressing an exogenous recombinant protein in an animal component-free growth medium.
    Type: Application
    Filed: February 28, 2001
    Publication date: July 25, 2002
    Inventors: Stefanie Beate Pluschkell, Roderick William Geldart, Lewis Ho, Mark Alan Koehler, Centy Afam Okediadi, Stephen Joseph Pias, Marie Meiying Zhu, Steven Joseph Hawrylik
  • Patent number: D751538
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: March 15, 2016
    Assignee: Zivix, LLC
    Inventor: Chad Alan Koehler