Patents by Inventor Alan Mollet

Alan Mollet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7417216
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: August 26, 2008
    Assignee: Digirad Corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Patent number: 7297927
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 20, 2007
    Assignee: Digirad Corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Patent number: 7256386
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: August 14, 2007
    Assignee: Digirad Corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20070012866
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: August 31, 2006
    Publication date: January 18, 2007
    Inventors: Lars Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20060175539
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: March 21, 2006
    Publication date: August 10, 2006
    Inventors: Lars Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20060175677
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: March 21, 2006
    Publication date: August 10, 2006
    Inventors: Lars Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20060157811
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: March 21, 2006
    Publication date: July 20, 2006
    Inventors: Lars Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20040206886
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 21, 2004
    Applicant: Digirad Corporation, a Delaware corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Patent number: 6734416
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 11, 2004
    Assignee: Digirad Corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Patent number: 6670258
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: December 30, 2003
    Assignee: Digirad Corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20030059630
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: November 16, 2002
    Publication date: March 27, 2003
    Applicant: Digirad Coproation, a Delaware corporation
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet
  • Publication number: 20020000562
    Abstract: Ultra-low leakage current backside-illuminated semiconductor photodiode arrays are fabricated using a method of formation of a transparent, conducting bias electrode layer that avoids high-temperature processing of the substrate after the wafer has been gettered. As a consequence, the component of the reverse-bias leakage current associated with strain, crystallographic defects or impurities introduced during elevated temperature processing subsequent to gettering can be kept extremely low. An optically transparent, conductive bias electrode layer, serving as both an optical window and an ohmic backside equipotential contact surface for the photodiodes, is fabricated by etching through the polysilicon gettering layer and a portion of the thickness of heavily-doped crystalline silicon layer formed within, and near the back of, the substrate during the gettering process.
    Type: Application
    Filed: April 20, 2001
    Publication date: January 3, 2002
    Inventors: Lars S. Carlson, Shulai Zhao, John Sheridan, Alan Mollet