Patents by Inventor ALAN TSO

ALAN TSO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197416
    Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
  • Patent number: 11637002
    Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 25, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
  • Patent number: 11581165
    Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: February 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
  • Patent number: 11239061
    Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
  • Publication number: 20210265134
    Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
    Type: Application
    Filed: January 25, 2021
    Publication date: August 26, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
  • Patent number: 10903054
    Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
  • Publication number: 20190189401
    Abstract: The present technology includes improved gas distribution designs for forming uniform plasmas during semiconductor processing operations or for treating the interior of semiconductor processing chambers. While conventional gas distribution assemblies may receive a specific reactant or reactant ratio which is then distributed into the plasma region, the presently described technology allows for improved control of the reactant input distribution. The technology allows for separate flows of reactants to different regions of the plasma to offset any irregularities observed in process uniformity. A first precursor may be delivered to the center of the plasma above the center of the substrate/pedestal while a second precursor may be delivered to an outer portion of the plasma above an outer portion of the substrate/pedestal. In so doing, a substrate residing on the pedestal may experience a more uniform etch or deposition profile across the entire surface.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 20, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Kenneth D. Schatz, Alan Tso, Marlin Wijekoon, Dimitri Kioussis
  • Publication number: 20180254203
    Abstract: The present disclosure generally relates to apparatuses and methods for reducing particle contamination on substrate surfaces. In one example, the apparatus is embodied as a load lock chamber including a top heater liner disposed over and coupled to a heater pedestal. The top heater liner generally includes a top plate and one or more walls, which support the top heater liner over the heater pedestal. Since the top heater liner is in contact with the heater pedestal, the top heater liner is generally heated to a temperature at which contaminating particles are volatile, such as greater than about 100° C. In operation, volatile fluorine passing through or adjacent to the hot top heater liner remains in gaseous form and thus are pumped out of the load lock chamber. The top heater liner thus advantageously reduces the potential for contaminating particles depositing on the substrate surface and improves overall production yield.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 6, 2018
    Inventors: Saravjeet SINGH, Alan TSO, Tae Won KIM
  • Publication number: 20170229291
    Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
    Type: Application
    Filed: April 28, 2017
    Publication date: August 10, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
  • Patent number: 9714465
    Abstract: Embodiments of the present invention generally provide apparatus and methods for altering the flow and pressure differential of process gases supplied across a showerhead of a processing chamber to provide improved deposition uniformity across the surface of a substrate disposed therein. In one embodiment, a blocker plate is disposed between a backing plate and a showerhead. In one embodiment, the distance between the blocker plate and the showerhead is adjustable. In another embodiment, the blocker plate has a non-planar surface contour. In another embodiment, a regional blocker plate is disposed between a backing plate and a showerhead. In another embodiment, a central blocker plate and a peripheral blocker plate are disposed between a backing plate and a showerhead.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: July 25, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lun Tsuei, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh
  • Publication number: 20160148821
    Abstract: A semiconductor processing chamber may include a remote plasma region, and a processing region fluidly coupled with the remote plasma region. The processing region may be configured to house a substrate on a support pedestal. The support pedestal may include a first material at an interior region of the pedestal. The support pedestal may also include an annular member coupled with a distal portion of the pedestal or at an exterior region of the pedestal. The annular member may include a second material different from the first material.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Inventors: Saravjeet Singh, Alan Tso, Jingchun Zhang, Zihui Li, Hanshen Zhang, Dmitry Lubomirsky
  • Publication number: 20160068969
    Abstract: Methods of preventing microcontamination from developing on substrates when the substrates are removed from a substrate processing system are described. During processing in the substrate processing mainframe, fluorine adatoms are present (perhaps left by a prior process in the mainframe) on the surface of the substrate. The fluorine adatoms develop into microcontamination upon exposure to typical atmospheric conditions. A hydrogen-containing precursor is flowed into a remote plasma region to form plasma effluents. The plasma effluents are flowed into a substrate processing region to remove or react with the fluorine adatoms in a treatment operation. Following the treatment operation, the concentration of fluorine on or near the surface is reduced and the development of microcontamination after breaking vacuum is curtailed.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Zhenjiang Cui, Alan Tso, Anchuan Wang, Nitin K. Ingle, Hiroshi Hamana
  • Patent number: 8728918
    Abstract: A method for fabricating a semiconductor layer within a plasma enhanced chemical vapor deposition (PECVD) apparatus. The PECVD apparatus includes a plurality of walls defining a processing region, a substrate support, a shadow frame, a gas distribution showerhead, a gas source in fluid communication with the gas distribution showerhead and the processing region, a radio frequency power source coupled to the gas distribution showerhead, and one or more VHF grounding straps electrically coupled to at least one of the plurality of walls. The VHF grounding straps provide a low-impedance current path between at least one of the plurality of walls and at least one of a shadow frame or the substrate support. The method further includes delivering a semiconductor precursor gas and a dopant precursor gas and delivering a very high frequency (VHF) power to generate a plasma to form a first layer on the one or more substrates.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: May 20, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Shuran Sheng, Lin Zhang, Zheng Yuan, Rongping Wang, Alan Tso
  • Publication number: 20130012030
    Abstract: An apparatus and methods for depositing amorphous and microcrystalline silicon films during the formation of solar cells are provided. In one embodiment, a method and apparatus is provided for generating and introducing hydrogen radicals directly into a processing region of a processing chamber for reaction with a silicon-containing precursor for film deposition on a substrate. In one embodiment, the hydrogen radicals are generated by a remote plasma source and directly introduced into the processing region via a line of sight path to minimize the loss of energy by the hydrogen radicals prior to reaching the processing region.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 10, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Jianshe Tang, Dustin W. Ho, Francimar C. Schmitt, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh, Hari K. Ponnekanti, Chris Eberspacher, Zheng Yuan
  • Publication number: 20130004681
    Abstract: Embodiments of the present invention provide a plasma processing chamber having a mini blocker plate for delivering processing gas to a processing chamber and methods to use the mini blocker plate to improve uniformity. The blocker plate assembly comprising a mini blocker plate having a plurality of through holes, and two or more standoff spacers configured to position the mini blocker plate at a distance away from a blocker plate.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alan Tso, Jeonghoon Oh, Yi Zheng, Tom K. Cho, Zheng Yuan, Lin Zhang, Qunhua Wang, Robin L. Tiner
  • Publication number: 20120171852
    Abstract: Methods for forming and treating a silicon containing layer in a thin film transistor structure or solar cell devices are provided. In one embodiment, a method for forming a silicon containing layer on a substrate includes providing a substrate into a processing chamber, providing a gas mixture having a silicon containing gas into the processing chamber, providing a hydrogen containing gas from a remote plasma source coupled to the processing chamber, applying a RF power less than 17.5 mWatt/cm2 to the processing chamber, and forming a silicon containing layer on the substrate.
    Type: Application
    Filed: August 2, 2010
    Publication date: July 5, 2012
    Inventors: Zheng Yuan, Mandar B. Pandit, Francimar C. Schmitt, Yi Zheng, Fan Yang, Lipan Li, Alan Tso, Dustin W. Ho, Tom K. Cho, Randhir Thakur
  • Publication number: 20100136216
    Abstract: Embodiments of the present invention generally provide apparatus and methods for altering the flow and pressure differential of process gases supplied across a showerhead of a processing chamber to provide improved deposition uniformity across the surface of a substrate disposed therein. In one embodiment, a blocker plate is disposed between a backing plate and a showerhead. In one embodiment, the distance between the blocker plate and the showerhead is adjustable. In another embodiment, the blocker plate has a non-planar surface contour. In another embodiment, a regional blocker plate is disposed between a backing plate and a showerhead. In another embodiment, a central blocker plate and a peripheral blocker plate are disposed between a backing plate and a showerhead.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Lun Tsuei, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh
  • Publication number: 20100136261
    Abstract: Embodiments of the present invention generally relates to a method and apparatus for processing substrates using plasma. More particularly, embodiments of the present invention provide a plasma processing chamber having an electrode coupled to a plurality of RF returning straps, wherein impedance of the RF returning straps are set and/or adjusted to tune the plasma distribution during processing. In one embodiment, impedance of RF returning straps varies by changing length of the RF returning straps, by changing width of the RF returning straps, by changing spacing of the RF returning straps, by changing location of the RF returning straps, by adding a capacitor to the RF returning straps, or by combinations thereof.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 3, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alan Tso, Daniel J. Hoffman, Tsutomu (Tom) Tanaka, William N. Taylor, JR., Rongping Wang, John M. White
  • Publication number: 20100112212
    Abstract: Embodiments of the present invention generally provide apparatus and methods for altering the contour of a gas distribution plate within a process chamber without breaking vacuum conditions within the chamber. In one embodiment, a central support device adjusted to vary the height of a central region of a gas distribution plate with respect to the periphery of the gas distribution plate. In another embodiment, a plurality of central support devices is adjusted to vary the height of a central region of a gas distribution plate with respect to the periphery of the plate. In yet another embodiment, a plurality of central support devices and a plurality of mid-range support devices are adjusted to vary the height of certain regions of the gas distribution plate with respect to other regions of the gas distribution plate. In one embodiment, the contour of the gas distribution plate is altered based on changes detected within the process chamber.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 6, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Lin Zhang, Lun Tsuei, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh
  • Publication number: 20100104754
    Abstract: Embodiments of the present invention generally provide apparatus and methods for introducing process gases into a processing chamber at a plurality of locations. In one embodiment, a central region of a showerhead and corner regions of a showerhead are fed process gases from a central gas source with a first mass flow controller regulating the flow in the central region and a second mass flow controller regulating the flow in the corner regions. In another embodiment, a central region of a showerhead is fed process gases from a first gas source and corner regions of the showerhead are fed process gases from a second gas source. In another embodiment, a central region of a showerhead is fed process gases from a first gas source and each corner region of the showerhead is fed process gases from a separate gas source.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN TSO, Lun Tsuei, Tom K. Cho, Brian Sy-Yuan Shieh