Patents by Inventor Alan W. Collins

Alan W. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7413627
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: August 19, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Patent number: 6833052
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: December 21, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Patent number: 6814814
    Abstract: In a method of cleaning process residues formed on surfaces in a substrate processing chamber, a sacrificial substrate comprising a sacrificial material is placed in the chamber, a sputtering gas is introduced into the chamber, and the sputtering gas is energized to sputter the sacrificial material from the substrate. The sputtered sacrificial material reacts with residues on the chamber surfaces to clean them. In one version, the sacrificial substrate comprises a silicon-containing material that when sputtered deposits silicon on the chamber walls that reacts with and cleans fluorine-containing species that are left behind by a chamber cleaning process.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: November 9, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Alan W. Collins, Feng Gao, Tetsuya Ishikawa, Padmanaban Krishnaraj, Yaxin Wang
  • Patent number: 6715496
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: April 6, 2004
    Assignee: Applied Materials Inc.
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Patent number: 6633076
    Abstract: Methods and apparatus of the present invention deposit fluorinated silicate glass (FSG) in such a manner that it strongly adheres to an overlying or underlying barrier layer or etch stop layer, and has a lower dielectric constant, among other benefits. In one embodiment, silicon tetrafluoride (SiF4), oxygen (O2), and argon (Ar) are used as the reactant gases, with the ratio of oxygen to silicon controlled to be at between about 2:1 to 6:1. Such O2 levels help reduce the amount of degradation of ceramic chamber components otherwise caused by the elimination of silane from the process recipe.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 14, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Robert Duncan, Joseph D'Souza, Alan W. Collins, Nasreen Chopra, Kimberly Branshaw
  • Publication number: 20030183243
    Abstract: In a method of cleaning process residues formed on surfaces in a substrate processing chamber, a sacrificial substrate comprising a sacrificial material is placed in the chamber, a sputtering gas is introduced into the chamber, and the sputtering gas is energized to sputter the sacrificial material from the substrate. The sputtered sacrificial material reacts with residues on the chamber surfaces to clean them. In one version, the sacrificial substrate comprises a silicon-containing material that when sputtered deposits silicon on the chamber walls that reacts with and cleans fluorine-containing species that are left behind by a chamber cleaning process.
    Type: Application
    Filed: March 29, 2002
    Publication date: October 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Alan W. Collins, Feng Gao, Tetsuya Ishikawa, Padmanaban Krishnaraj, Yaxin Wang
  • Publication number: 20030164224
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Application
    Filed: April 3, 2003
    Publication date: September 4, 2003
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Patent number: 6596123
    Abstract: A method and apparatus for cleaning a semiconductor wafer processing system comprising a turbomolecular pump. In one embodiment, the invention may be reduced to practice by first supplying a cleaning agent to a chamber; pumping the cleaning agent from the chamber through an the exhaust port; at least partially opening a gate valve; and drawing at least a portion of the cleaning agent through the gate valve and into the turbomolecular pump.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: July 22, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Michael Chiu Kwan, Alan W. Collins, Jalel Hamila, Padmanabhan Krishnaraj, Zhengquan Tan
  • Patent number: 6589610
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: July 8, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Publication number: 20030064556
    Abstract: Methods and apparatus of the present invention deposit fluorinated silicate glass (FSG) in such a manner that it strongly adheres to an overlying or underlying barrier layer or etch stop layer, and has a lower dielectric constant, among other benefits. In one embodiment, silicon tetrafluoride (SiF4), oxygen (O2), and argon (Ar) are used as the reactant gases, with the ratio of oxygen to silicon controlled to be at between about 2:1 to 6:1. Such O2 levels help reduce the amount of degradation of ceramic chamber components otherwise caused by the elimination of silane from the process recipe.
    Type: Application
    Filed: October 30, 2002
    Publication date: April 3, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Robert Duncan, Joseph D'Souza, Alan W. Collins, Nasreen Chopra, Kimberly Branshaw
  • Publication number: 20030056900
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Application
    Filed: October 29, 2002
    Publication date: March 27, 2003
    Applicant: APPLIED MATERIALS, INCORPORATED a Delaware corporation
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Patent number: 6511922
    Abstract: Methods and apparatus of the present invention deposit fluorinated silicate glass (FSG) in such a manner that it strongly adheres to an overlying or underlying barrier layer or etch stop layer, and has a lower dielectric constant, among other benefits. In one embodiment, silicon tetrafluoride (SiF4), oxygen (O2), and argon (Ar) are used as the reactant gases, with the ratio of oxygen to silicon controlled to be at between about 2:1 to 6:1. Such O2 levels help reduce the amount of degradation of ceramic chamber components otherwise caused by the elimination of silane from the process recipe.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: January 28, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Robert Duncan, Joseph D'Souza, Alan W. Collins, Nasreen Chopra, Kimberly Branshaw
  • Patent number: 6486081
    Abstract: The present invention provides an apparatus for depositing a film on a substrate comprising a processing chamber, a substrate support member disposed within the chamber, a first gas inlet, a second gas inlet, a plasma generator and a gas exhaust. The first gas inlet provides a first gas at a first distance from an interior surface of the chamber, and the second gas inlet provides a second gas at a second distance that is closer than the first distance from the interior surface of the chamber. Thus, the second gas creates a higher partial pressure adjacent the interior surface of the chamber to significantly reduce deposition from the first gas onto the interior surface.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: November 26, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Padmanabhan Krishnaraj, Feng Gao, Alan W. Collins, Lily Pang
  • Publication number: 20020173167
    Abstract: Methods and apparatus of the present invention deposit fluorinated silicate glass (FSG) in such a manner that it strongly adheres to an overlying or underlying barrier layer or etch stop layer, and has a lower dielectric constant, among other benefits. In one embodiment, silicon tetrafluoride (SiF4), oxygen (O2), and argon (Ar) are used as the reactant gases, with the ratio of oxygen to silicon controlled to be at between about 2:1 to 6:1. Such O2 levels help reduce the amount of degradation of ceramic chamber components otherwise caused by the elimination of silane from the process recipe.
    Type: Application
    Filed: March 26, 2001
    Publication date: November 21, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Padmanabhan Krishnaraj, Robert Duncan, Joseph D'Souza, Alan W. Collins, Nasreen Chopra, Kimberly Branshaw
  • Publication number: 20020160113
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Application
    Filed: June 17, 2002
    Publication date: October 31, 2002
    Applicant: APPLIED MATERIALS, INCORPORATED
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Patent number: 6416823
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: July 9, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Publication number: 20010053423
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Application
    Filed: February 29, 2000
    Publication date: December 20, 2001
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins
  • Patent number: 6143078
    Abstract: The present invention provides an apparatus for depositing a film on a substrate comprising a processing chamber, a substrate support member disposed within the chamber, a first gas inlet, a second gas inlet, a plasma generator and a gas exhaust. The first gas inlet provides a first gas at a first distance from an interior surface of the chamber, and the second gas inlet provides a second gas at a second distance that is closer than the first distance from the interior surface of the chamber. Thus, the second gas creates a higher partial pressure adjacent the interior surface of the chamber to significantly reduce deposition from the first gas onto the interior surface.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: November 7, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Padmanabhan Krishnaraj, Feng Gao, Alan W. Collins, Lily Pang
  • Patent number: 6070551
    Abstract: An improved deposition chamber (2) includes a housing (4) defining a chamber (18) which houses a substrate support (14). A mixture of oxygen and SiF.sub.4 is delivered through a set of first nozzles (34) and silane is delivered through a set of second nozzles (34a) into the chamber around the periphery (40) of the substrate support. Silane (or a mixture of silane and SiF.sub.4) and oxygen are separately injected into the chamber generally centrally above the substrate from orifices (64, 76). The uniform dispersal of the gases coupled with the use of optimal flow rates for each gas results in uniformly low (under 3.4) dielectric constant across the film.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: June 6, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Shijian Li, Yaxin Wang, Fred C. Redeker, Tetsuya Ishikawa, Alan W. Collins