Patents by Inventor Alastair B. Godfrey

Alastair B. Godfrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120230860
    Abstract: A method for purifying metal M1 particles manufactured by an electrochemical reduction process, the method comprising the steps of introducing the metal M1 particles into a heat source (13) at a temperature substantially equal to or higher than the melting point of M1 so as to cause vaporisation of some or substantially all of the contaminating impurities present, removing the vaporised impurities from the vicinity of the particles, and cooling the purified metal M1 particles. The purified particles can be used directly in lower temperature powder metallurgy processes and have a fully dense spherical particle morphology, imparting good flowability. The purification process can also be incorporated as an integral stage of sheet or stock production processes based on particle feedstocks that have been produced by electrochemical reduction.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Applicant: METALYSIS LIMITED
    Inventors: Charles M. WARD-CLOSE, Alastair B. Godfrey, Paul S. Goodwin
  • Publication number: 20110158843
    Abstract: A method of removing oxygen from a solid metal, metal compound or semi-metal M1O by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface and that oxygen dissolves in the electrolyte M2Y and wherein, M1O is in the form of (sintered) granules or is in the form of a powder which is continuously fed into the fused salt. Also disclosed is a method of producing a metal foam comprising the steps of fabricating a foam-like metal oxide perform, removing oxygen from said foam structured metal oxide preform by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface. The method is advantageously applied for the production of titanium from Ti-dioxide.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 30, 2011
    Applicant: METALYSIS LIMITED
    Inventors: Charles M. Ward-Close, Alastair B. Godfrey
  • Publication number: 20040060826
    Abstract: Oxygen is removed from metal or metalloid oxides by electrolysis in a fused salt, to produce elements or alloys, so as to prevent problems of cell contamination and poor power efficiency, particularly in scaled up electro-deoxidation processes. Cell current is controlled not to exceed a selected threshold for substantially all of the electrolysis process. The process may include a first constant current phase and a second constant voltage phase.
    Type: Application
    Filed: November 19, 2002
    Publication date: April 1, 2004
    Inventor: Alastair B. Godfrey
  • Publication number: 20030057101
    Abstract: A method for the manufacture of a foamed metal or alloy article including the steps of: A) selecting a particulate feedstock having suitable proportions of a metal element or combination of metal elements M1 contaminated by one or more contaminants X to form an alloy suitable for the foamed article; B) mixing the feedstock with a binder to form a slurry; C) preforming the slurry into a near net shape of the desired article and drying the preform to remove the binder; D) sintering the dried preform to provide a bonded foamed article; E) introducing the sintered article into an electrochemical cell, the cell containing a liquid electrolyte comprising a fused salt or mixture of salts generally designated as M2Y in which contaminant(s) X is soluble, and a relatively inert anode; F) conducting electrolysis under conditions favourable to the selective dissolution of the contaminant(s) X in preference to the M2 cation; and G) following electrolysis reclaiming the purified foam article from the cathode.
    Type: Application
    Filed: September 10, 2002
    Publication date: March 27, 2003
    Inventors: Charles M Ward Close, Alastair B Godfrey
  • Publication number: 20030051780
    Abstract: A method of adding boron to a tungsten, or tantalum, containing titanium aluminide alloy to form a boride dispersion in the tungsten, or tantalum, containing titanium aluminide. A molten tungsten, or tantalum, containing titanium aluminide alloy is formed and tungsten, or tantalum, boride is added to the molten tungsten, or tantalum, containing titanium aluminide alloy to form a molten mixture. The molten mixture is cooled and solidified to form a tungsten, or tantalum, containing titanium aluminide alloy having a uniform dispersion of tungsten, or tantalum, boride particles substantially without the formation of clusters of tungsten, or tantalum, boride. The titanium aluminide alloy comprises between 0.5 at % and 2.0 at % boron.
    Type: Application
    Filed: October 30, 2002
    Publication date: March 20, 2003
    Applicant: ROLLS-ROYCE PLC
    Inventors: Paul A. Blenkinsop, Alastair B. Godfrey
  • Publication number: 20030047463
    Abstract: A method of removing oxygen from a solid metal, metal compound or semi-metal M1O by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface and that oxygen dissolves in the electrolyte M2Y and wherein, M1O is in the form of (sintered) granules or is in the form of a powder which is continuously fed into the fused salt. Also disclosed is a method of producing a metal foam comprising the steps of fabricating a foam-like metal oxide preform, removing oxygen from said foam structured metal oxide preform by electrolysis in a fused salt of M2Y or a mixture of salts, which comprises conducting electrolysis under conditions such that reaction of oxygen rather than M2 deposition occurs at an electrode surface. The method is advantageously applied for the production of titanium from Ti-dioxide.
    Type: Application
    Filed: September 6, 2002
    Publication date: March 13, 2003
    Inventors: Charles M. Ward-Close, Alastair B Godfrey
  • Publication number: 20030047462
    Abstract: A method for the production of a master alloy including the steps of; introducing mixed ores comprising the metals of the alloy; introducing the mixed ores into an electrochemical cell, the cell containing a liquid electrolyte comprising a fused salt or mixture of salts generally designated as M2Y in which contaminants X contained in the mixed ores are soluble, and a relatively inert anode; conducting electrolysis under conditions favourable to the selective dissolution of contaminants contained in the mixed ores in preference to the deposition of the M2 cation; and following electrolysis, reclaiming the purified mixed ore form the cathode.
    Type: Application
    Filed: September 10, 2002
    Publication date: March 13, 2003
    Inventors: Charles M Ward-Close, Alastair B Godfrey
  • Patent number: 6488073
    Abstract: A method of adding boron to a tungsten, or tantalum, containing titanium aluminide alloy to form a boride dispersion in the tungsten, or tantalum, containing titanium aluminide. A molten tungsten, or tantalum, containing titanium aluminide alloy is formed and tungsten, or tantalum, boride is added to the molten tungsten, or tantalum, containing titanium aluminide alloy to form a molten mixture. The molten mixture is cooled and solidified to form a tungsten, or tantalum, containing titanium aluminide alloy having a uniform dispersion of tungsten, or tantalum, boride particles substantially without the formation of clusters of tungsten, or tantalum, boride. The titanium aluminide alloy comprises between 0.5 at % and 2.0 at % boron.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: December 3, 2002
    Assignee: Rolls-Royce plc
    Inventors: Paul A. Blenkinsop, Alastair B. Godfrey