Patents by Inventor Alastair M. Reed

Alastair M. Reed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220044346
    Abstract: This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. One implementation is directed to a printed object comprising: a white substrate or background comprising a first area; an ink mixture printed at a first plurality of spatial locations within the first area, the ink mixture printed such that the first area comprises a second plurality of spatial locations without the ink mixture, the ink mixture comprising extender white and Green 7 ink, the ink mixture comprising a volume or weight ratio of 97.5% to 99.75% white extender and 2.5%-0.25% Green 7 ink; in which the first plurality of spatial locations is arranged in a pattern conveying an encoded signal, and in which the white substrate or background and the ink mixture comprise a spectral reflectivity difference at or around 660 nm in a difference range of 8%-30%. Of course, other implementations, methods, packages, systems and apparatus are described in this patent document.
    Type: Application
    Filed: May 17, 2021
    Publication date: February 10, 2022
    Inventors: Alastair M. Reed, Kristyn R. Falkenstern
  • Patent number: 11238556
    Abstract: Image processing technology embeds signal (e.g., digital watermarks) within imagery during a raster image process(or). One claim recites: an image processing method of embedding a signal within imagery using raster image processing (RIP), including: obtaining a plurality of elements representing a signal; determining edges within the imagery; using the determined edges as a reference, modulating a plurality of print structures within the RIP according to the plurality of elements to embed the signal within the imagery, in which one determined edge defines the signal to be at a predetermined angle in a set of dimensions comprising color and spatial frequency. Of course, other claims, combinations and technology are described too.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 1, 2022
    Assignee: Digimarc Corporation
    Inventors: Tomas Filler, Alastair M. Reed, John F. Stach
  • Publication number: 20220012840
    Abstract: The present disclosure relates to signal processing such as image processing, signal encoding, digital watermarking and data hiding. A sparse or dense digital watermark signal can be conveyed with a narrow-band absorption material corresponding to a center wavelength of a Point of Sale (POS) barcode scanner. The POS barcode scanner typically captures 2D imagery. Since the narrow-band absorption material absorbs over a narrow-band it is relatively imperceptible to the Human Visual System (HVS) but can be seen by the POS scanner.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 13, 2022
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed, Vojtech Holub, Tony F. Rodriguez
  • Publication number: 20220012838
    Abstract: The present disclosure relates generally to signal encoding for printed objects. One implementation selects an embed direction based on a minimal visibility axis of a 1 JND ellipse at a certain color center. One claim recites an apparatus comprising: memory for storing chromatic contrast sensitivity data representing multiple color encoding angles; one or more multi-core processors configured for: using the stored chromatic contrast sensitivity data, generating an ellipse around a first color center; and from the ellipse, determining a signal encode direction, the signal encode direction comprising an angle ? representing a negative angle between the ‘a*’ axis in an CIELAB space and a direction of minimum sensitivity of an encoded signal, in which the angle ? comprises ?9 degrees????25 degrees. Other technology described.
    Type: Application
    Filed: June 25, 2021
    Publication date: January 13, 2022
    Inventors: Alastair M. Reed, Kristyn R. Falkenstern
  • Publication number: 20210366073
    Abstract: This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. We disclose methods, systems and apparatus for selecting which ink(s) should be selected to carry an encoded signal for a given machine-vision wavelength for a retail package or other printed design. We also disclose retail product packages and other printed objects, and methods to generate such, including a sparse mark in a first ink and an overprinted ink flood in a second ink. The first ink and the second ink are related through tack and spectral reflectance difference. Of course, other methods, packages, objects, systems and apparatus are described in this disclosure.
    Type: Application
    Filed: May 28, 2021
    Publication date: November 25, 2021
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed
  • Publication number: 20210347191
    Abstract: This disclosure relates to counterfeit detection and deterrence using advanced signal processing technology including steganographic embedding and digital watermarking. Digital watermark can be used on consumer products, labels, logos, hang tags, stickers and other objects to provide counterfeit detection mechanisms.
    Type: Application
    Filed: April 26, 2021
    Publication date: November 11, 2021
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed, Tomas Filler
  • Patent number: 11062418
    Abstract: The present disclosure relates to signal processing such as image processing, signal encoding, digital watermarking and data hiding. Technology includes a method comprising: capturing imagery corresponding to a printed object with a red illumination scanner, the red illumination scanner having a wavelength at or around 660 nm, said scanning yielding scan data, wherein the printed object includes a process color printed thereon through an offset or flexo printing press, the process color including a narrow-band absorption material that has a peak absorbance at or around 660 nm, the process color printed in a manner to convey an encoded plural-bit message, the encoded plural-bit message corresponding to a GTIN number; analyzing the imagery with one or more programmed multi-core processors to decode the encoded plural bit message, said analyzing yielding the GTIN number; and providing the GTIN number as an output. Of course other combinations and technology is also provided.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: July 13, 2021
    Assignee: Digimarc Corporation
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed, Vojtech Holub, Tony F. Rodriguez
  • Patent number: 11055805
    Abstract: The present disclosure relates generally to signal encoding for printed objects. One implementation selects an embed direction based on a minimal visibility axis of a 1 JND ellipse at a certain color center. Other technology provided.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: July 6, 2021
    Assignee: Digimarc Corporation
    Inventors: Alastair M. Reed, Kristyn R. Falkenstern
  • Publication number: 20210192162
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: January 6, 2021
    Publication date: June 24, 2021
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Patent number: 11023992
    Abstract: This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. We disclose methods, systems and apparatus for selecting which ink(s) should be selected to carry an encoded signal for a given machine-vision wavelength for a retail package or other printed design. We also disclose retail product packages and other printed objects, and methods to generate such, including a sparse mark in a first ink and an overprinted ink flood in a second ink. The first ink and the second ink are related through tack and spectral reflectance difference. Of course, other methods, packages, objects, systems and apparatus are described in this disclosure.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: June 1, 2021
    Assignee: Digimarc Corporation
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed
  • Publication number: 20210157998
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 27, 2021
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Patent number: 11010857
    Abstract: This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. A printed object is provided including: a white substrate or printed white background comprising a first area; an ink mixture printed at a first plurality of spatial locations within the first area, the ink mixture printed such that the first area comprises a second plurality of spatial locations without the ink mixture, in which the first plurality of spatial locations is arranged in a 2-dimensional pattern conveying an encoded signal. The white substrate or white background and the ink mixture comprise a spectral reflectivity difference at or around 660 nm in a difference range of 8%-30%. Of course, other implementations, methods, packages, systems and apparatus are described in this patent document.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: May 18, 2021
    Assignee: Digimarc Corporation
    Inventors: Alastair M. Reed, Kristyn R. Falkenstern
  • Patent number: 10987960
    Abstract: This disclosure relates to counterfeit detection and deterrence using advanced signal processing technology including steganographic embedding and digital watermarking. Digital watermark can be used on consumer products, labels, logos, hang tags, stickers and other objects to provide counterfeit detection mechanisms.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: April 27, 2021
    Assignee: Digimarc Corporation
    Inventors: Kristyn R. Falkenstern, Alastair M. Reed, Tomas Filler
  • Publication number: 20210082080
    Abstract: This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. The technology may be applied to retail packages and other printed objects, e.g., such as hang tags, labels and receipts.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 18, 2021
    Inventors: Alastair M. Reed, Kristyn R. Falkenstern
  • Publication number: 20210042483
    Abstract: Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
    Type: Application
    Filed: July 13, 2020
    Publication date: February 11, 2021
    Inventors: Jacob L. Boles, Alastair M. Reed, John D. Lord
  • Publication number: 20210004550
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: March 17, 2017
    Publication date: January 7, 2021
    Inventors: Brian T. MacIntosh, Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell
  • Publication number: 20200380226
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 3, 2020
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Publication number: 20200372228
    Abstract: In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
    Type: Application
    Filed: June 5, 2020
    Publication date: November 26, 2020
    Inventors: Tony F. Rodriguez, Bruce L. Davis, Geoffrey B. Rhoads, John D. Lord, Alastair M. Reed, Eric D. Evans, Rebecca L. Gerlach, Yang Bai, John F. Stach, Tomas Filler, Marc G. Footen, Sean Calhoon, William Y. Conwell, Brian T. MacIntosh
  • Publication number: 20200320323
    Abstract: The present document provides image processing methods and apparatus. One claim recites: obtaining a signal to be encoded in color image data, the signal comprising a plural-bit payload; predicting a resulting color of overprinting several inks on a substrate, the overprinting representing the color image data encoded with the signal; using the resulting color for both i) visibility evaluation of the overprinting, and ii) signal robustness evaluation of the overprinting as seen by an imaging device. Other claims and combinations are provided.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 8, 2020
    Inventors: Alastair M. Reed, Tomas Filler, Kristyn R. Falkenstern, Yang Bai
  • Patent number: 10783601
    Abstract: The present disclosure relates to signal processing such as digital watermarking and other encoded signals. One claim recites a method of offsetting color casting for a printed object associated with a retail product. The method includes: providing a first additive that absorbs light energy at or around a center wavelength of an illumination source; providing a second additive that absorbs in the ultra-violet spectrum, yet fluoresces at or around the center wavelength of the illumination source, wherein a combination of spectral responses of the first additive and the second additive offset color casting; printing the first additive, second additive and a color on the printed object, wherein the printing conveys an encoded plural bit signal. Of course, other claims and combinations are provided in the specification with reference to specific implementations and related examples.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: September 22, 2020
    Assignee: Digimarc Corporation
    Inventors: Tony F. Rodriguez, Alastair M. Reed, Kristyn R. Falkenstern