Patents by Inventor Albert Kloos

Albert Kloos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8214131
    Abstract: A method for controlling an internal combustion engine with a common-rail system, in which a fuel quantity is computed from a measured fuel pressure distribution and in which the computed fuel quantity is set as the controlling value for controlling an injection. The fuel quantity is computed by measuring the pressure distribution (pE) of an individual accumulator, reproducing a modeled pressure distribution (pEMOD) according to the measured pressure distribution (pE) using a hydraulic model, and computing the fuel quantity from the hydraulic model.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: July 3, 2012
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Albert Kloos, Andreas Kunz, Günther Schmidt, Ralf Speetzen, Michael Willmann
  • Patent number: 7788018
    Abstract: A method for controlling an internal combustion engine having a common rail system together with individual accumulators. A rotational speed-control deviation (dn) is determined from a target rotational speed (nSL) that represents the set point for an outer control loop to control the rotational speed, as well as from an actual rotational speed (nIST). A target torque (MSL) is determined from the rotational speed-control deviation (dn) via a rotational speed controller as a master controller. A target injection duration (SD(SOLL)) is determined from the target torque (MSL). The target duration injection (SD(SOLL)) represents the set point for an inner control loop for controlling cylinder-specific injection duration. An injection duration deviation is determined from the target injection duration (SD(SOLL)) and from an actual injection duration.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: August 31, 2010
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Ralf Speetzen, Günther Schmidt, Albert Kloos, Andreas Kunz, Michael Willmann, Jörge Remele, Marc Hehle
  • Patent number: 7769530
    Abstract: For an internal combustion engine with a common rail system including individual accumulators, a process for open- and closed-loop control is proposed, in which the individual accumulator pressure (pE) is detected within a measuring interval and stored, an absolute minimum value of the stored individual accumulator pressure (pE) is interpreted as the end of the main injection, and on the basis of the end of the main injection, a mathematical function is used to calculate a virtual starting time for the main injection. In the measuring interval after the end of the main injection, the individual accumulator pressure (pE) is filtered within a time window, a local minimum value of the filtered individual accumulator pressure is interpreted as the end of a post-injection, and a mathematical function is used to calculate a virtual start of the post-injection.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: August 3, 2010
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Marc Hehle, Albert Kloos, Jörg Remele, Günther Schmidt, Ralf Speetzen, Michael Walder, Michael Willmann
  • Publication number: 20100076665
    Abstract: For an internal combustion engine with a common rail system including individual accumulators, a process for open- and closed-loop control is proposed, in which the individual accumulator pressure (pE) is detected within a measuring interval and stored, an absolute minimum value of the stored individual accumulator pressure (pE) is interpreted as the end of the main injection, and on the basis of the end of the main injection, a mathematical function is used to calculate a virtual starting time for the main injection. In the measuring interval after the end of the main injection, the individual accumulator pressure (pE) is filtered within a time window, a local minimum value of the filtered individual accumulator pressure is interpreted as the end of a post-injection, and a mathematical function is used to calculate a virtual start of the post-injection.
    Type: Application
    Filed: September 25, 2008
    Publication date: March 25, 2010
    Inventors: Marc Hehle, Albert Kloos, Jorge Remele, Gunther Schmidt, Ralph Speetzen, Michael Walder, Michael Willmann
  • Patent number: 7493887
    Abstract: A method for detecting a preinjection in an internal combustion engine with a common-rail system, including individual accumulators, in which an individual accumulator pressure distribution is detected in a measurement interval and is used to determine an injection end of the main injection, in which a virtual injection start of the main injection is computed by a mathematical function as a function of the injection end, and in which the virtual injection start is set as the actual injection start of the main injection. With the preinjection activated, an actual injection delay for the main injection is determined as a function of the actual injection start, an injection delay deviation of a set injection delay from the actual injection delay is computed, and the injection delay deviation is used to determine whether a preinjection has occurred.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: February 24, 2009
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Albert Kloos, Andreas Kunz, Günther Schmidt, Ralf Speetzen, Michael Willmann
  • Publication number: 20090043482
    Abstract: A method for controlling an internal combustion engine having a common rail system together with individual accumulators. A rotational speed-control deviation (dn) is determined from a target rotational speed (nSL) that represents the set point for an outer control loop to control the rotational speed, as well as from an actual rotational speed (nIST). A target torque (MSL) is determined from the rotational speed-control deviation (dn) via a rotational speed controller as a master controller. A target injection duration (SD(SOLL)) is determined from the target torque (MSL). The target duration injection (SD(SOLL)) represents the set point for an inner control loop for controlling cylinder-specific injection duration. An injection duration deviation is determined from the target injection duration (SD(SOLL)) and from an actual injection duration.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 12, 2009
    Inventors: Ralf Speetzen, Gunther Schmidt, Albert Kloos, Andreas Kunz, Michael Willmann, Jorg Remele, Marc Hehle
  • Publication number: 20080027624
    Abstract: A method for controlling an internal combustion engine with a common-rail system, in which a fuel quantity is computed from a measured fuel pressure distribution and in which the computed fuel quantity is set as the controlling value for controlling an injection. The fuel quantity is computed by measuring the pressure distribution (pE) of an individual accumulator, reproducing a modeled pressure distribution (pEMOD) according to the measured pressure distribution (pE) using a hydraulic model, and computing the fuel quantity from the hydraulic model.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 31, 2008
    Inventors: Albert Kloos, Andreas Kunz, Gunther Schmidt, Ralf Speetzen, Michael Willmann
  • Publication number: 20080027625
    Abstract: A method for detecting a preinjection in an internal combustion engine with a common-rail system, including individual accumulators, in which an individual accumulator pressure distribution is detected in a measurement interval and is used to determine an injection end of the main injection, in which a virtual injection start of the main injection is computed by a mathematical function as a function of the injection end, and in which the virtual injection start is set as the actual injection start of the main injection. With the preinjection activated, an actual injection delay for the main injection is determined as a function of the actual injection start, an injection delay deviation of a set injection delay from the actual injection delay is computed, and the injection delay deviation is used to determine whether a preinjection has occurred.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 31, 2008
    Inventors: Albert Kloos, Andreas Kunz, Gunther Schmidt, Ralf Speetzen, Michael Willmann
  • Patent number: 7305972
    Abstract: In a method of controlling an internal combustion engine having a common rail fuel injection system including individual fuel storage chambers, wherein the pressure pattern of the fuel supplied to each injector can be determined and actual and virtual fuel injection ends and fuel injection begins are determined, the deviations from the desired fuel injection ends and from the fuel injection begins are calculated and the injectors are evaluated on the basis of the deviations and further control of the internal combustion engine is based on an evaluation of the fuel injectors.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: December 11, 2007
    Assignee: KTU Friedrichshafen GmbH
    Inventors: Albert Kloos, Michael Willmann, Günther Schmidt, Ralf Speetzen, Stefan Müller, Andreas Kunz
  • Patent number: 7272486
    Abstract: In a method of controlling an internal combustion engine with a common rail fuel injection system including individual fuel storage chambers for the supply of fuel to the various cylinders of the internal combustion engine, a fuel pressure (pE(i)) is determined during a measuring interval (MESS) and is stored, the existence of a significant change in the fuel pressure is determined as an injection begin (SB=f(pE(i), Phi)) or an injection end (SE=f(pE(i)), Phi), a virtual injection begin is calculated by way of a mathematical function (FKT) depending on the injection end (SE), and the virtual injection begin (SBv) is used as the actual injection begin (SB) for the subsequent control of the internal combustion engine.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: September 18, 2007
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Ralf Speetzen, Günther Schmidt, Albert Kloos
  • Publication number: 20060266332
    Abstract: In a method of controlling an internal combustion engine having a common rail fuel injection system including individual fuel storage chambers, wherein the pressure pattern of the fuel supplied to each injector can be determined and actual and virtual fuel injection ends and fuel injection begins are determined, the deviations from the desired fuel injection ends and from the fuel injection begins are calculated and the injectors are evaluated on the basis of the deviations and further control of the internal combustion engine is based on an evaluation of the fuel injectors.
    Type: Application
    Filed: August 7, 2006
    Publication date: November 30, 2006
    Inventors: Albert Kloos, Michael Willmann, Gunther Schmidt, Ralf Speetzen, Stefan Muller, Andreas Kunz
  • Publication number: 20060157035
    Abstract: In a method of controlling an internal combustion engine with a common rail fuel injection system including individual fuel storage chambers for the supply of fuel to the various cylinders of the internal combustion engine, a fuel pressure (pE(i)) is determined during a measuring interval (MESS) and is stored, the existence of a significant change in the fuel pressure is determined as an injection begin (SB=f(pE(i), Phi)) or an injection end (SE=f(pE(i)), Phi), a virtual injection begin is calculated by way of a mathematical function (FKT) depending on the injection end (SE), and the virtual injection begin (SBv) is used as the actual injection begin (SB) for the subsequent control of the internal combustion engine.
    Type: Application
    Filed: March 20, 2006
    Publication date: July 20, 2006
    Inventors: Ralf Speetzen, Gunther Schmidt, Albert Kloos
  • Patent number: 6805102
    Abstract: A method and a system are provided for injecting fuel into the combustion spaces of an internal-combustion engine, in which case the injection system contains a number of fuel injectors each comprising an injection valve and a common feed and storage line supplying the individual fuel injectors with highly pressurized fuel. The beginning and the end of the injection of the fuel into the combustion chamber are controlled by opening and closing the injection valve. A defined lowering of the fuel pressure existing in the fuel injector takes place during the injection, so that the pressure which rises because of the ram pressure during the closing of the injection valve at the end of the injection in the fuel injector does not exceed a defined value, particularly preferably the system pressure of the fuel injection system.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 19, 2004
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Guenther Schmidt, Albert Kloos
  • Publication number: 20040112337
    Abstract: The invention relates to a method and to a system for injecting fuel into the combustion chambers of an internal combustion engine. The inventive injection system is characterized by a plurality of fuel injectors (5) that comprise one injection valve (9, 10) each and a common feed and storage line (1) that supplies the individual fuel injectors (5) with highly pressurized fuel. Start and end of the injection of the fuel into the combustion chamber is controlled by opening and closing the injection valve (9, 10). The invention is further characterized in that the fuel pressure in the fuel injector (5) is reduced by a defined value during injection so that the pressure rising in the fuel injector (5) at the end of injection due to the back pressure during closing of the injection valve (9, 10) does not exceed a predetermined value, especially preferably the system pressure of the fuel injection system.
    Type: Application
    Filed: September 22, 2003
    Publication date: June 17, 2004
    Inventors: Guenther Schmidt, Albert Kloos
  • Patent number: 6729302
    Abstract: A fuel injection system for an internal-combustion diesel engine has a fuel injector, typically one of several, supplied by way of a high-pressure fuel line with highly pressurized fuel for the injection of the fuel into the combustion space of the internal-combustion engine during an injection operation. A pressure control valve connected in front of the fuel injector in the high-pressure fuel line is provided for controlling the pressure of the fuel injected during the injection operation. The pressure control valve contains a freely displaceable piston operating on both sides and a slide connected into the flow path of the high-pressure fuel line for the opening and closing of the passage cross-section of the flow path of the high-pressure fuel line as a function of the position of the piston.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: May 4, 2004
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Michael Willmann, Albert Kloos, Gerd Huber, Paul Neumeir
  • Patent number: 6622932
    Abstract: Within an injector housing, a nozzle needle comprising a nozzle needle shaft is accommodated in a first guide boring in a longitudinally displaceable manner. A nozzle prechamber which is arranged in front of the nozzle needle shaft and which is situated on the fore-part of the first guide boring is supplied with fuel via a high pressure channel. A control valve permits a control chamber, which is coupled to the nozzle needle and which is subjected to the action of highly pressurized fuel, to be relieved from pressure by opening the nozzle needle. According to a second embodiment, a spring chamber is configured as a high-pressure chamber on the rear side of the first guide boring that guides the nozzle needle shaft. The spring chamber is separate from the control chamber and contains a readjusting spring that impinges upon the nozzle needle in a direction of closure. This configuration prevents fuel exiting the nozzle prechamber from overflowing over the guide boring which guides the nozzle needle.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 23, 2003
    Assignee: MTU Motoren-und Turbinen-Union Friedrichshafen GmbH
    Inventors: Günther Schmidt, Albert Kloos
  • Publication number: 20020179063
    Abstract: A fuel injection system for an internal-combustion diesel engine has a fuel injector, typically one of several, supplied by way of a high-pressure fuel line with highly pressurized fuel for the injection of the fuel into the combustion space of the internal-combustion engine during an injection operation. A pressure control valve connected in front of the fuel injector in the high-pressure fuel line is provided for controlling the pressure of the fuel injected during the injection operation. The pressure control valve contains a freely displaceable piston operating on both sides and a slide connected into the flow path of the high-pressure fuel line for the opening and closing of the passage cross-section of the flow path of the high-pressure fuel line as a function of the position of the piston.
    Type: Application
    Filed: March 29, 2002
    Publication date: December 5, 2002
    Applicant: MTU Friedrichshafen GmbH.
    Inventors: Michael Willmann, Albert Kloos, Gerd Huber, Paul Neumeir