Patents by Inventor Albert L. Hensley, Jr.

Albert L. Hensley, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4278566
    Abstract: A process for hydrotreating a hydrocarbon stream to remove nitrogen and sulfur which process comprises contacting a hydrocarbon stream comprising a stream selected from petroleum distillate, tar sands distillate, and shale oil, with hydrogen and a catalyst comprising a porous refractory inorganic oxide and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal, said catalyst having a pore volume distribution comprising 20-50% of pore volume in pores with diameters of 0-50 Angstrom units, 30-70% of pore volume in pores with diameters of 50-100 Angstrom units, 0-20% of pore volume in pores with diameters of 100-150 Angstrom units, and 0-10% of pore volume in pores with diameters greater than 150 Angstrom units.
    Type: Grant
    Filed: April 11, 1980
    Date of Patent: July 14, 1981
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick, P. Donald Hopkins
  • Patent number: 4225421
    Abstract: A process for hydrodemetallation and hydrodesulfurization of hydrocarbon feedstock containing asphaltenes and metals by contacting said feedstock with hydrogen and a bimodal catalyst consisting essentially of at least one active original hydrogenation metal selected from Group VIB deposited on a support comprising alumina wherein said catalyst has a surface area within the range of about 140 to about 300 m.sup.2 /gm, a total pore volume based upon measurement by mercury penetration within the range of about 0.4 cc/gm to about 1.0 cc/gm, and comprising about 60% to about 95% of its micropore volume in micropores having diameters within the range of about 50 A to about 200 A, 0% to about 15% of its micropore volume in pores having diameters within the range of about 200 A to about 600 A and about 3% to about 30% of said total pore volume based upon measurements by mercury penetration in macropores having diameters of 600 A or greater.
    Type: Grant
    Filed: March 13, 1979
    Date of Patent: September 30, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4224144
    Abstract: A process for hydrotreating a hydrocarbon stream such as petroleum distillate and similar hydrocarbon materials by contacting said stream with hydrogen and a catalyst comprising a porous refractory inorganic oxide support and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal. This process enables improved removal of nitrogen and sulfur, particularly from gas oils.
    Type: Grant
    Filed: March 19, 1979
    Date of Patent: September 23, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick, P. Donald Hopkins
  • Patent number: 4212729
    Abstract: Disclosed is a two-stage catalytic process for hydrodemetallation and hydrodesulfurization of heavy hydrocarbon streams containing asphaltenes and a substantial amount of metals. The first stage of this process comprises contacting the feedstock in a first reaction zone with hydrogen and a demetallation catalyst comprising hydrogenation metal selected from Group VIB and/or Group VIII deposed on a large-pore, high surface area inorganic oxide support; the second stage of the process comprises contacting the effluent from the first reaction zone with a catalyst consisting essentially of hydrogenation metal selected from Group VIB deposed on a smaller pore, catalytically active support comprising alumina, said second stage catalyst having a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, having a majority of its pore volume in pore diameters within the range of about 80 A to about 130 A, and the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.9 cc/gm.
    Type: Grant
    Filed: July 26, 1978
    Date of Patent: July 15, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Albert L. Hensley, Jr., Leonard M. Quick
  • Patent number: 4191635
    Abstract: A heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds is (a) contacted with hydrogen and a hydrotreating catalyst containing molybdenum and chromium, either as metals, as oxides, as sulfides, or mixtures thereof, deposed on a large-pore, catalytically active alumina to reduce the metals content in said stream, to convert the asphaltenes, nitrogen compounds, and sulphur compounds in said stream, the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, and an average pore diameter within the range of about 100 A (10 nm) to about 200 A (20 nm); and (b) at least a portion of the hydrotreated stream is cracked with a cracking catalyst to produce gasoline and distillates in improved yields. The catalyst in step (a) may also contain cobalt.
    Type: Grant
    Filed: December 7, 1978
    Date of Patent: March 4, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Leonard M. Quick, Albert L. Hensley, Jr.
  • Patent number: 4188284
    Abstract: The process comprises contacting a heavy hydrocarbon stream containing metals and asphaltenes to reduce the contents of nitrogen compounds, sulfur compounds, metals and asphaltenes in the hydrocarbon stream under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component consisting essentially of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof on a large-pore, catalytically active alumina. The catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, and an average pore diameter within the range of about 100 A to about 200 A.
    Type: Grant
    Filed: December 7, 1978
    Date of Patent: February 12, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Leonard M. Quick, Albert L. Hensley, Jr.
  • Patent number: 4181602
    Abstract: The process comprises contacting a heavy hydrocarbon stream under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component selected from the group consisting of (1) molybdenum, chromium, and a small amount of cobalt, (2) their oxides, (3) their sulfides, and (4) mixtures thereof deposed on a large-pore, catalytically active alumina. The molybdenum is present in an amount within the range of about 5 wt.% to about 15 wt.%, calculated as MoO.sub.3 and based upon total catalyst weight, the chromium is present in an amount within the range of about 5 wt.% to about 20 wt.%, calculated as Cr.sub.2 O.sub.3 and based upon the total catalyst weight, and the cobalt is present in an amount within the range of about 0.1 wt.% to about 5 wt.%, calculated as CoO and based upon the total catalyst weight. The catalyst possesses a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.
    Type: Grant
    Filed: December 7, 1978
    Date of Patent: January 1, 1980
    Assignee: Standard Oil Company (Indiana)
    Inventors: Leonard M. Quick, Albert L. Hensley, Jr.
  • Patent number: 4119531
    Abstract: There is disclosed a catalyst for the hydrodemetallization of petroleum hydrocarbon streams containing asphaltenes and large quantities of metals. This catalyst consists essentially of a small amount of a single hydrogenation metal selected from the group consisting of metals from Group VIB of the Periodic Table of Elements and metals from Group VIII of the Periodic Table deposed on a large-pore alumina. The hydrogenation metal may be present in the elemental form, as an oxide, as a sulfide, or mixtures thereof. The catalyst is characterized by a surface area of at least 120 square meters per gram, a pore volume of at least 0.7 cc per gram, and an average pore diameter of at least 125 Angstrom units. Suitable examples of a hydrogenation metal are nickel and molybdenum.
    Type: Grant
    Filed: June 30, 1977
    Date of Patent: October 10, 1978
    Assignee: Standard Oil Company (Indiana)
    Inventors: P. Donald Hopkins, Albert L. Hensley, Jr.
  • Patent number: 4102779
    Abstract: There is disclosed a process for the demetalation of a heavy petroleum hydrocarbon stream containing metals and asphaltenes. This process comprises contacting in a reaction zone the heavy petroleum hydrocarbon stream under suitable operating conditions and in the presence of hydrogen with a catalyst comprising a hydrogenation component deposed on a large-pore, high-surface area silica gel to produce an effluent that contains less metals and less asphaltenes than the hydrocarbon stream charged to the reaction zone.
    Type: Grant
    Filed: August 13, 1976
    Date of Patent: July 25, 1978
    Assignee: Standard Oil Company (Indiana)
    Inventor: Albert L. Hensley, Jr.
  • Patent number: 4054539
    Abstract: The catalyst comprises the oxides of cobalt and molybdenum deposited on a co-catalytic acidic cracking support comprising ultrastable, large-pore crystalline aluminosilicate material and a silica-alumina cracking catalyst. This catalyst may be used in a hydrocracking process or a combination process for converting petroleum hydrocarbons to gasoline blending stock having an unleaded research octane number greater than about 105. The hydrocracking process comprises contacting the catalyst in a hydrocracking reaction zone under hydrocracking conditions with a feedstock having an initial boiling point of at least 350.degree. F. The combination process comprises treating the hydrocarbons in the hydrocracking process, selectively solvent-extracting the aromatics from the resultant hydrocracked product to obtain an aromatic extract and a non-aromatic raffinate, catalytically reforming the non-aromatic raffinate, and blending the resultant catalytic reformate with aromatic extract.
    Type: Grant
    Filed: November 28, 1973
    Date of Patent: October 18, 1977
    Assignee: Standard Oil Company (Indiana)
    Inventor: Albert L. Hensley, Jr.