Patents by Inventor Albert Lamm

Albert Lamm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190024259
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: July 25, 2018
    Publication date: January 24, 2019
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Patent number: 10041187
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: August 7, 2018
    Assignee: QMAT, INC.
    Inventors: Francois J. Henley, Sien Kang, Albert Lamm
  • Publication number: 20170358704
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: June 29, 2017
    Publication date: December 14, 2017
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Publication number: 20170084778
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: December 7, 2016
    Publication date: March 23, 2017
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Publication number: 20160111500
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Patent number: 9257339
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: February 9, 2016
    Assignee: SILICON GENESIS CORPORATION
    Inventors: Francois J. Henley, Sien Kang, Albert Lamm
  • Publication number: 20140197419
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Applicant: QMAT, Inc.
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM
  • Publication number: 20130292691
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate are described. In particular embodiments, a bulk substrate having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise (111) single crystal silicon. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 7, 2013
    Applicant: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Sien Kang, Albert Lamm
  • Patent number: 8124499
    Abstract: Free standing thickness of materials are fabricated using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. A semiconductor substrate is provided having a surface region and a thickness. The surface region of the semiconductor substrate is subjected to a first plurality of high energy particles generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature. The surface region of the semiconductor substrate is subjected to a second plurality of high energy particles generated using the linear accelerator, the second plurality of high energy particles being provided to increase a stress level of the cleave region from a first stress level to a second stress level.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: February 28, 2012
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Albert Lamm, Babak Adibi
  • Publication number: 20090206275
    Abstract: A system of introducing a particle beam such as a linear accelerator particle beam for low contaminate processing. The system includes an accelerator apparatus configured to generate a first particle beam including at least a first ionic specie in an energy level of 1 MeV to 5 MeV or greater. Additionally, the system includes a beam filter coupled to the linear accelerator apparatus to receive the first particle beam. The beam filter is in a first chamber and configured to generate a second particle beam with substantially the first ionic specie only. The first chamber is associated with a first pressure. The system further includes an end-station including a second chamber coupled to the first chamber for extracting the second particle beam. The second particle beam is irradiated onto a planar surface of a bulk workpiece loaded in the second chamber for implanting the first ionic specie. The second chamber is associated with a second pressure that is higher than the first pressure.
    Type: Application
    Filed: October 2, 2008
    Publication date: August 20, 2009
    Applicant: Silcon Genesis Corporation
    Inventors: Francois J. Henley, Albert Lamm, Adam Brailove
  • Publication number: 20080206962
    Abstract: A method for fabricating free standing thickness of materials using one or more semiconductor substrates, e.g., single crystal silicon, polysilicon, silicon germanium, germanium, group III/IV materials, and others. In a specific embodiment, the present method includes providing a semiconductor substrate having a surface region and a thickness. The method includes subjecting the surface region of the semiconductor substrate to a first plurality of high energy particles generated using a linear accelerator to form a region of a plurality of gettering sites within a cleave region, the cleave region being provided beneath the surface region to defined a thickness of material to be detached, the semiconductor substrate being maintained at a first temperature.
    Type: Application
    Filed: November 5, 2007
    Publication date: August 28, 2008
    Applicant: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Albert Lamm, Babak Adibi
  • Publication number: 20080128641
    Abstract: A system for forming one or more detachable semiconductor films capable of being free-standing. The apparatus includes an ion source to generate a plurality of collimated charged particles at a first energy level. The system includes a linear accelerator having a plurality of modular radio frequency quadrupole (RFQ) elements numbered from 1 through N successively coupled to each other, where N is an integer greater than 1. The linear accelerator controls and accelerates the plurality of collimated charged particles at the first energy level into a beam of charge particles having a second energy level. RFQ element numbered 1 is operably coupled to the ion source. The system includes an exit aperture coupled to RFQ element numbered N of the RFQ linear accelerator. In a specific embodiment, the system includes a beam expander coupled to the exit aperture, the beam expander being configured to process the beam of charged particles at the second energy level into an expanded beam of charged particles.
    Type: Application
    Filed: November 7, 2007
    Publication date: June 5, 2008
    Applicant: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Albert Lamm, Babak Adibi
  • Publication number: 20050150597
    Abstract: An apparatus and method for controlled cleaving is presented. Embodiments of the present invention include an apparatus for cleaving a substrate comprising a bottom shell coupled to a hinge mechanism, a top shell coupled to the hinge mechanism, a plurality of o-rings or suction cups coupled to the top and bottom shells for providing a suction force sufficient to exert a tensile force to the top and bottom of a substrate, a compliant member for sealing a portion of a grove edge of a substrate and for maintaining a pressure inside a volume formed between the groove edge and the groove edge of the substrate, a gas port for supplying gas to the volume, and a height adjustment mechanism coupled to the top shell and the bottom shell for separating the top shell from the bottom shell.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 14, 2005
    Applicant: Silicon Genesis Corporation
    Inventors: Francois Henley, Hongbee Teoh, Anthony Paler, Albert Lamm, Philip Ong