Patents by Inventor Albert Patrick Faulkinbury
Albert Patrick Faulkinbury has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11850809Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.Type: GrantFiled: November 11, 2021Date of Patent: December 26, 2023Assignee: Johns ManvilleInventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval, Matthew Walp, Edwing Chaparro-Chavez, Stanislav O Kukatin, Albert Patrick Faulkinbury, Christopher McBride, Bradley Ray Lockwood, Nicholas Gene Fitzpatrick
-
Patent number: 11396470Abstract: Continuous flow submerged combustion melter cooling wall panels, including a primary metal plate, and several 90 degree metal pieces welded to the primary metal plate in parallel configuration, each of the 90 degree metal pieces having metal leg plates forming a 90 degree vertex there between. Each metal leg plate has an edge distal to the vertex, the distal edge of the first metal leg plate welded to the first major surface of the primary metal plate, the distal edge of the second metal leg plate welded to the vertex of an adjacent 90 degree metal piece. The plurality of 90 degree metal pieces may have a length (l) such that l<L, each welded to the primary metal plate in staggered configuration to form, along with first and second end plates and a seal plate, a serpentine continuous flow coolant channel.Type: GrantFiled: April 3, 2019Date of Patent: July 26, 2022Assignee: Johns ManvilleInventor: Albert Patrick Faulkinbury
-
Publication number: 20220063217Abstract: According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.Type: ApplicationFiled: November 11, 2021Publication date: March 3, 2022Inventors: Mingfu Zhang, Klaus Friedrich Gleich, Asheber Yohannes, Michael John Block, Jawed Asrar, Derek Cooper Bristol, Christopher P Sandoval, Matthew Walp, Edwing Chapparo-Chavez, Stanislav O Kukatin, Albert Patrick Faulkinbury, Christopher McBride, Bradley Ray Lockwood
-
Patent number: 11248787Abstract: Combustion burners, burner panels, submerged combustion melters including the panels, and methods of using the same are disclosed. In certain embodiments, the burner includes an annular liquid cooled jacket defining a central longitudinal through passage. An inner conduit is positioned substantially concentrically within an outer conduit, the latter positioned in the through passage, each conduit comprising proximal and distal ends, the conduits configured so that the outer and inner conduits are movable axially. The inner conduit forms a primary passage and the outer conduit forms a secondary passage between the outer conduit and the inner conduit. In one embodiment the outer conduit has an exterior surface configured along at least a portion thereof with threads mating with adjacent threads on an inner surface of the annular liquid cooled jacket. Other embodiments including lock and release dogs or bolt arrangements. The burners promote burner life and melter campaign length.Type: GrantFiled: May 15, 2019Date of Patent: February 15, 2022Assignee: Johns ManvilleInventor: Albert Patrick Faulkinbury
-
Publication number: 20190264912Abstract: Combustion burners, burner panels, submerged combustion melters including the panels, and methods of using the same are disclosed. In certain embodiments, the burner includes an annular liquid cooled jacket defining a central longitudinal through passage. An inner conduit is positioned substantially concentrically within an outer conduit, the latter positioned in the through passage, each conduit comprising proximal and distal ends, the conduits configured so that the outer and inner conduits are movable axially. The inner conduit forms a primary passage and the outer conduit forms a secondary passage between the outer conduit and the inner conduit. In one embodiment the outer conduit has an exterior surface configured along at least a portion thereof with threads mating with adjacent threads on an inner surface of the annular liquid cooled jacket. Other embodiments including lock and release dogs or bolt arrangements. The burners promote burner life and melter campaign length.Type: ApplicationFiled: May 15, 2019Publication date: August 29, 2019Inventor: Albert Patrick Faulkinbury
-
Publication number: 20190241454Abstract: Continuous flow submerged combustion melter cooling wall panels, including a primary metal plate, and several 90 degree metal pieces welded to the primary metal plate in parallel configuration, each of the 90 degree metal pieces having metal leg plates forming a 90 degree vertex there between. Each metal leg plate has an edge distal to the vertex, the distal edge of the first metal leg plate welded to the first major surface of the primary metal plate, the distal edge of the second metal leg plate welded to the vertex of an adjacent 90 degree metal piece. The plurality of 90 degree metal pieces may have a length (l) such that l<L, each welded to the primary metal plate in staggered configuration to form, along with first and second end plates and a seal plate, a serpentine continuous flow coolant channel.Type: ApplicationFiled: April 3, 2019Publication date: August 8, 2019Inventor: Albert Patrick Faulkinbury
-
Patent number: 10337732Abstract: Combustion burners, burner panels, submerged combustion melters including the panels, and methods of using the same are disclosed. In certain embodiments, the burner includes an annular liquid cooled jacket defining a central longitudinal through passage. An inner conduit is positioned substantially concentrically within an outer conduit, the latter positioned in the through passage, each conduit comprising proximal and distal ends, the conduits configured so that the outer and inner conduits are movable axially. The inner conduit forms a primary passage and the outer conduit forms a secondary passage between the outer conduit and the inner conduit. In one embodiment the outer conduit has an exterior surface configured along at least a portion thereof with threads mating with adjacent threads on an inner surface of the annular liquid cooled jacket. Other embodiments including lock and release dogs or bolt arrangements. The burners promote burner life and melter campaign length.Type: GrantFiled: August 25, 2016Date of Patent: July 2, 2019Assignee: Johns ManvilleInventor: Albert Patrick Faulkinbury
-
Patent number: 10301208Abstract: Continuous flow submerged combustion melter cooling wall panels, including a primary metal plate, and several 90 degree metal pieces welded to the primary metal plate in parallel configuration, each of the 90 degree metal pieces having metal leg plates forming a 90 degree vertex there between. Each metal leg plate has an edge distal to the vertex, the distal edge of the first metal leg plate welded to the first major surface of the primary metal plate, the distal edge of the second metal leg plate welded to the vertex of an adjacent 90 degree metal piece. The plurality of 90 degree metal pieces may have a length (l) such that l<L, each welded to the primary metal plate in staggered configuration to form, along with first and second end plates and a seal plate, a serpentine continuous flow coolant channel.Type: GrantFiled: August 25, 2016Date of Patent: May 28, 2019Inventor: Albert Patrick Faulkinbury
-
Patent number: 10233105Abstract: Methods of melting particulate feedstocks in a submerged combustion melter employing an arrangement of one or more submerged combustion burners emitting combustion products into turbulent molten material. Operating the burners such that there is established a turbulent melting region extending vertically from the floor to a splash region, the splash region extending vertically between the turbulent melting region and a head space region, the head space region extending vertically between the splash region and the melter ceiling, the ceiling positioned above the floor a height H2. Feeding the particulate feedstock into the splash region through one or more inlet ports, the inlet ports positioned at a height H1 measured from the floor, where H1/H2 ranges from about 0.33 to about 0.67. The SCM may have a baffle extending from the ceiling into the splash region. A particulate feedstock conduit may be employed, having an exit port in the splash region.Type: GrantFiled: October 14, 2016Date of Patent: March 19, 2019Assignee: Johns ManvilleInventors: Albert Patrick Faulkinbury, Aaron Morgan Huber
-
Patent number: 10196294Abstract: Submerged combustion burner panels, submerged combustion melters including one or more of the panels, and methods of using the same. The burner panel includes a panel body including a fluid-cooled portion and a protective non-fluid cooled portion. An exterior surface defined by the fluid-cooled portion, and an interior surface defined by the protective non-fluid cooled portion, exterior and interior referring to an SCM in which the panel is installed. The fluid-cooled portion has at least one burner support passage of diameter (d1) extending from the exterior surface to a seam where the fluid-cooled and protective non-fluid cooled portions meet supporting at least one fluid-cooled SC burner having a fluid-cooled burner tip attached to a burner body protruding away from the seam. The protective non-fluid-cooled portion has a combustion products flow passage of diameter (d2)<(d1). The burner panels promote burner life and melter campaign length.Type: GrantFiled: September 7, 2016Date of Patent: February 5, 2019Assignee: Johns ManvilleInventor: Albert Patrick Faulkinbury
-
Patent number: 9982884Abstract: Methods of maximizing mixing and melting in a submerged combustion melter (SCM) are described. One method includes melting an inorganic feedstock in an SCM using an arrangement of two or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), and operating the arrangement of SC burners such that a progressively higher percentage of a total combustion flow from the SC burners occurs from SC burners at progressively downstream positions in the SCM. Other methods include operating the N and S SC burners with more combustion flow than the central burners. Other methods include strategic placement of fuel lean SC burners and fuel rich SC burners.Type: GrantFiled: September 15, 2015Date of Patent: May 29, 2018Assignee: Johns ManvilleInventors: Aaron Morgan Huber, Albert Patrick Faulkinbury
-
Publication number: 20180105446Abstract: Methods of melting particulate feedstocks in a submerged combustion melter employing an arrangement of one or more submerged combustion burners emitting combustion products into turbulent molten material. Operating the burners such that there is established a turbulent melting region extending vertically from the floor to a splash region, the splash region extending vertically between the turbulent melting region and a head space region, the head space region extending vertically between the splash region and the melter ceiling, the ceiling positioned above the floor a height H2. Feeding the particulate feedstock into the splash region through one or more inlet ports, the inlet ports positioned at a height H1 measured from the floor, where H1/H2 ranges from about 0.33 to about 0.67. The SCM may have a baffle extending from the ceiling into the splash region. A particulate feedstock conduit may be employed, having an exit port in the splash region.Type: ApplicationFiled: October 14, 2016Publication date: April 19, 2018Inventors: Albert Patrick Faulkinbury, Aaron Morgan Huber
-
Publication number: 20180065877Abstract: Submerged combustion burner panels, submerged combustion melters including one or more of the panels, and methods of using the same. The burner panel includes a panel body including a fluid-cooled portion and a protective non-fluid cooled portion. An exterior surface defined by the fluid-cooled portion, and an interior surface defined by the protective non-fluid cooled portion, exterior and interior referring to an SCM in which the panel is installed. The fluid-cooled portion has at least one burner support passage of diameter (d1) extending from the exterior surface to a seam where the fluid-cooled and protective non-fluid cooled portions meet supporting at least one fluid-cooled SC burner having a fluid-cooled burner tip attached to a burner body protruding away from the seam. The protective non-fluid-cooled portion has a combustion products flow passage of diameter (d2)<(d1). The burner panels promote burner life and melter campaign length.Type: ApplicationFiled: September 7, 2016Publication date: March 8, 2018Inventor: Albert Patrick Faulkinbury
-
Publication number: 20180058688Abstract: Combustion burners, burner panels, submerged combustion melters including the panels, and methods of using the same are disclosed. In certain embodiments, the burner includes an annular liquid cooled jacket defining a central longitudinal through passage. An inner conduit is positioned substantially concentrically within an outer conduit, the latter positioned in the through passage, each conduit comprising proximal and distal ends, the conduits configured so that the outer and inner conduits are movable axially. The inner conduit forms a primary passage and the outer conduit forms a secondary passage between the outer conduit and the inner conduit. In one embodiment the outer conduit has an exterior surface configured along at least a portion thereof with threads mating with adjacent threads on an inner surface of the annular liquid cooled jacket. Other embodiments including lock and release dogs or bolt arrangements. The burners promote burner life and melter campaign length.Type: ApplicationFiled: August 25, 2016Publication date: March 1, 2018Inventor: Albert Patrick Faulkinbury
-
Publication number: 20180057387Abstract: Continuous flow submerged combustion melter cooling wall panels, including a primary metal plate, and several 90 degree metal pieces welded to the primary metal plate in parallel configuration, each of the 90 degree metal pieces having metal leg plates forming a 90 degree vertex there between. Each metal leg plate has an edge distal to the vertex, the distal edge of the first metal leg plate welded to the first major surface of the primary metal plate, the distal edge of the second metal leg plate welded to the vertex of an adjacent 90 degree metal piece. The plurality of 90 degree metal pieces may have a length (l) such that l<L, each welded to the primary metal plate in staggered configuration to form, along with first and second end plates and a seal plate, a serpentine continuous flow coolant channel.Type: ApplicationFiled: August 25, 2016Publication date: March 1, 2018Inventor: Albert Patrick Faulkinbury
-
Publication number: 20170074506Abstract: Methods of maximizing mixing and melting in a submerged combustion melter (SCM) are described. One method includes melting an inorganic feedstock in an SCM using an arrangement of two or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), and operating the arrangement of SC burners such that a progressively higher percentage of a total combustion flow from the SC burners occurs from SC burners at progressively downstream positions in the SCM. Other methods include operating the N and S SC burners with more combustion flow than the central burners. Other methods include strategic placement of fuel lean SC burners and fuel rich SC burners.Type: ApplicationFiled: September 15, 2015Publication date: March 16, 2017Inventors: Aaron Morgan Huber, Albert Patrick Faulkinbury