Patents by Inventor Albert Salib

Albert Salib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8050857
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: November 1, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877200
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877201
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877199
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7877178
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: January 25, 2011
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7729829
    Abstract: A vehicle suspension system (19) includes a suspension (47). A lateral acceleration sensor (32) generates a lateral acceleration signal. A roll rate sensor (34) generates a roll rate signal. A controller (26) detects an irregularity in the suspension in response to the lateral acceleration signal and the roll rate signal. A method of detecting suspension irregularities in a vehicle (10) includes the generating of a lateral acceleration signal and a roll rate signal. Roll angle is determined in response to the lateral acceleration signal and roll rate signal. A roll gradient, a roll acceleration coefficient, and a roll damping parameter are determined in response to at least the roll angle. The roll gradient, the roll acceleration coefficient, and the roll damping parameter are compared to associated nominal values. A suspension irregularity is indicated in response to the comparison.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: June 1, 2010
    Assignee: Ford Global Technologies
    Inventors: David Messih, Jianbo Lu, Albert Salib, Erik Chubb
  • Publication number: 20100106377
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106360
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106369
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106376
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20100106370
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Application
    Filed: January 5, 2010
    Publication date: April 29, 2010
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Patent number: 7676307
    Abstract: A control system for a vehicle (10) is described for use in conjunction with the safety system (44) of the vehicle (10). A tire sensor or plurality of tire sensors generates tire force signals. The tire force signals may include lateral tire forces, longitudinal (or torque) tire forces, and normal tire forces. Based upon the tire force signals, a safety system (44) may be activated. The tire force sensors may be used to monitor various conditions including but not limited to sensing a roll condition, wheel lift detection, a trip event, oversteering and understeering conditions, pitch angle, bank angle, roll angle, and the position of the center of gravity of the vehicle.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: March 9, 2010
    Assignee: Ford Global Technologies
    Inventors: Paul Schmitt, Keith Mattson, Erik Chubb, Michael Brewer, Albert Salib, Todd Brown, Todd Mory, Daniel Eisele, Michael Lopez
  • Patent number: 7668645
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) for generating a roll rate signal, a lateral acceleration sensor (32) for generating a lateral acceleration signal, a longitudinal acceleration sensor (36) for generating a longitudinal acceleration signal, and a yaw rate sensor (28) for generating a yaw rate signal. A safety device or system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass on the vehicle, or a roll gradient, a roll acceleration coefficient, and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate of the vehicle, and controls the safety system in response thereto.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: February 23, 2010
    Assignee: Ford Global Technologies
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20080061625
    Abstract: A control system (10) for a vehicle (16) includes a sensor (228-240) that generates a sensor signal and a stability control system (14). A tire pressure monitoring system (12) generates a tire pressure signal. A brake (262) is coupled to the stability control system (14) and is associated with a rotational object (212) of the vehicle (16). A controller (18, 226) is coupled to the sensor (228-240), has multiple tire pressure associated brake control ranges R1-R3, and detects an unstable event in response to the sensor signal. The controller (18, 226) also applies a brake pressure in response to the tire pressure signal and the tire pressure associated brake control ranges R1-R3 via the stability control system (14).
    Type: Application
    Filed: September 7, 2006
    Publication date: March 13, 2008
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Paul Schmitt, Todd Brown, Jerry Engelman, Keith Mattson, Aaron Mills, Albert Salib, Michael Brewer, Fred Owens
  • Publication number: 20070067080
    Abstract: A vehicle suspension system (19) includes a suspension (47). A lateral acceleration sensor (32) generates a lateral acceleration signal. A roll rate sensor (34) generates a roll rate signal. A controller (26) detects an irregularity in the suspension in response to the lateral acceleration signal and the roll rate signal. A method of detecting suspension irregularities in a vehicle (10) includes the generating of a lateral acceleration signal and a roll rate signal. Roll angle is determined in response to the lateral acceleration signal and roll rate signal. A roll gradient, a roll acceleration coefficient, and a roll damping parameter are determined in response to at least the roll angle. The roll gradient, the roll acceleration coefficient, and the roll damping parameter are compared to associated nominal values. A suspension irregularity is indicated in response to the comparison.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 22, 2007
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: David Messih, Jianbo Lu, Albert Salib, Erik Chubb
  • Publication number: 20060085112
    Abstract: A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) generating a roll rate signal, a lateral acceleration sensor (32) generating a lateral acceleration signal, a longitudinal acceleration sensor (36) generating a longitudinal acceleration signal, and a yaw rate sensor (28) generating a yaw rate signal. A safety system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass or a roll gradient, a roll acceleration coefficient and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate and controlling the safety system in response thereto.
    Type: Application
    Filed: October 15, 2004
    Publication date: April 20, 2006
    Inventors: Jianbo Lu, Keith Mattson, David Messih, Erik Chubb, Albert Salib
  • Publication number: 20050256628
    Abstract: A method of controlling a safety system 38 of a vehicle 10 include determining a roll rate, determining a first control pressure in response to roll rate, determining a roll angle, and determining a second control pressure in response to the roll angle. The method further includes determining a final control pressure in response to the first control pressure and the second control pressure and controlling the safety system in response to the final control pressure.
    Type: Application
    Filed: May 2, 2005
    Publication date: November 17, 2005
    Inventors: Albert Salib, Hani Ghani, Mathijs Geurink, Todd Brown
  • Publication number: 20050246085
    Abstract: A method of operating a hydraulic safety system 38 includes determining a relative roll angle, determining a relative a slip angle, determining a yaw rate and determining a pressure build rate for the hydraulic safety system 38 in response to a relative roll angle, the yaw rate, slip angle, and yaw rate. The method further includes determining a precharge pressure level in response to the relative roll rate, the slip angle and the yaw rate and controlling the safety system 38 in response to the precharge pressure level.
    Type: Application
    Filed: April 27, 2005
    Publication date: November 3, 2005
    Inventors: Albert Salib, Hani Ghani, Mathijs Geurink, Todd Brown
  • Publication number: 20050217917
    Abstract: A method of densensitizing includes determining a relative roll angle, determining when the vehicle is in a transitional maneuver, and when the vehicle is in a transitional maneuver, setting a roll signal for control to the relative roll angle, reducing control effort and controlling a safety system (38) correspondingly.
    Type: Application
    Filed: May 24, 2005
    Publication date: October 6, 2005
    Inventors: Albert Salib, Jianbo Lu
  • Publication number: 20050033486
    Abstract: A control system for a vehicle (10) is described for use in conjunction with the safety system (44) of the vehicle (10). A tire sensor or plurality of tire sensors generates tire force signals. The tire force signals may include lateral tire forces, longitudinal (or torque) tire forces, and normal tire forces. Based upon the tire force signals, a safety system (44) may be activated. The tire force sensors may be used to monitor various conditions including but not limited to sensing a roll condition, wheel lift detection, a trip event, oversteering and understeering conditions, pitch angle, bank angle, roll angle, and the position of the center of gravity of the vehicle.
    Type: Application
    Filed: September 9, 2004
    Publication date: February 10, 2005
    Inventors: Paul Schmitt, Keith Mattson, Eric Chubb, Michael Brewer, Albert Salib, Todd Brown, Todd Mory, Daniel Eisele, Michael Lopez