Patents by Inventor Albert Szu-chi Wang

Albert Szu-chi Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9918085
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: March 13, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Publication number: 20160249048
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Application
    Filed: November 24, 2015
    Publication date: August 25, 2016
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Patent number: 9232219
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: January 5, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Publication number: 20130329779
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Microsoft Corporation
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Patent number: 8548051
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 1, 2013
    Assignee: Microsoft Corporation
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Patent number: 8195610
    Abstract: A method and apparatus for cache management of distributed objects have been disclosed. A query strategy, based on a fetch strategy and a merge strategy, may be used to query a database and reconcile data in a local cache. In one approach, a merge action depends upon whether an entity was added, deleted, or changed relative to the original version of the entity as it was last fetched.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: June 5, 2012
    Assignee: IdeaBlade, Inc.
    Inventors: Jonathan Jay Traband, Ward Raymond Bell, Albert Szu-chi Wang
  • Patent number: 7734821
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: June 8, 2010
    Assignee: Microsoft Corporation
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Publication number: 20100135412
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Application
    Filed: February 3, 2010
    Publication date: June 3, 2010
    Applicant: Microsoft Corporation
    Inventors: Albert Szu-chi Wang, Ming-Chieh Lee
  • Patent number: 7685305
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: March 23, 2010
    Assignee: Microsoft Corporation
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Patent number: 7133561
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 7, 2006
    Assignee: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Patent number: 7058229
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: June 6, 2006
    Assignee: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Patent number: 6968089
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: November 22, 2005
    Assignee: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Patent number: 6912584
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: June 28, 2005
    Assignee: Microsoft Corporation
    Inventors: Albert Szu-chi Wang, Ming-Chieh Lee
  • Patent number: 6856700
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: February 15, 2005
    Assignee: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Publication number: 20040252898
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 16, 2004
    Applicant: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Publication number: 20040252899
    Abstract: An adaptive entropy coder is coupled with a localized conditioning context to provide efficient compression of images with localized high frequency variations. In one implementation, an arithmetic coder can be used as the adaptive entropy coder. The localized conditioning context includes a basic context region with multiple context pixels that are adjacent the current pixel, each of the context pixels having an image tone. A state is determined for the basic context region based upon a pattern of unique image tones among the context pixels therein. An extended context region that includes the basic context region is used to identify a non-local trend within the context pixels and a corresponding state. A current pixel may be arithmetically encoded according to a previously encoded pixel having the same tone or as a not-in-context element. In one implementation, a not-in-context element may be represented by a tone in a color cache that is arranged as an ordered list of most recent not-in-context values.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 16, 2004
    Applicant: Microsoft Corporation
    Inventor: Albert Szu-chi Wang
  • Publication number: 20030086494
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Application
    Filed: December 23, 2002
    Publication date: May 8, 2003
    Applicant: Microsoft Corporation
    Inventors: Albert Szu-Chi Wang, Ming-Chieh Lee
  • Patent number: 6499060
    Abstract: An improved loss recovery method for coding streaming media classifies each data unit in the media stream as an independent data unit (I unit), a remotely predicted unit (R unit) or a predicted data unit (P unit). Each of these units is organized into independent segments having an I unit, multiple P units and R units interspersed among the P units. The beginning of each segment is the start of a random access point, while each R unit provides a loss recovery point that can be placed independently of the I unit. This approach separates the random access point from the loss recovery points provided by the R units, and makes the stream more impervious to data losses without substantially impacting coding efficiency. The most important data units are transmitted with the most reliability to ensure that the majority of the data received by the client is usable. The I units are the least sensitive to transmission losses because they are coded using only their own data.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: December 24, 2002
    Assignee: Microsoft Corporation
    Inventors: Albert Szu-chi Wang, Ming-Chieh Lee