Patents by Inventor Alberto Daniel Lacaze

Alberto Daniel Lacaze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10249151
    Abstract: The Canine Handler Operations Positioning System (the Inventors) taught by the present invention consists of one or more dog-worn sensor, one or more handler's shoe-worn sensor, and algorithms for maintaining localization of units of canines and handlers traveling in GPS and GPS-denied areas. The present invention adapts the localization algorithms from the human-based system to dogs, increase performance, reduce SWAP, and further refine the system based on user feedback. The human worn system is modified for the human handler for maximum operational practicality in regard to batteries, size, and interoperability to a radio. The Canine Handler Operations Positioning System (the Inventors) focuses on developing the dog-worn positioning system, modifying the handler's positioning sensor if needed, and integrating the system with an OCU. The complete the Inventors system would provide a positioning solution for both the dog(s) and handler(s).
    Type: Grant
    Filed: May 13, 2017
    Date of Patent: April 2, 2019
    Assignee: Robotic Research, LLC
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20190084694
    Abstract: A 3D printer that can use ABS-plus plastic material deployed in the battlefield for printing polycarbonate, or rubber components individually or in combination to create component parts comprised of two or more materials. A library of autonomous vehicles will be created utilizing the standard components and the 3D printer. These libraries will include a variety of light weight UGVS, fixed wings UAVS, quads rotors, hex-rotors, UGS, etc. The library will also include a variety of standard payloads that would be interchangeable from platform to platform. Each model in the library will provide the operator with a performance envelop of the printed system. A submission and approval process will be created for new devices. A common control architecture for controlling the devices will be forced on every model in the library.
    Type: Application
    Filed: November 16, 2018
    Publication date: March 21, 2019
    Inventors: Alberto Daniel Lacaze, Karl Murphy
  • Publication number: 20190068954
    Abstract: Structured light approaches utilize a laser to project features, which are then captured with a camera. By knowing the disparity between the laser emitter and the camera, the system can triangulate to find the range. Four, 185 degree field-of-view cameras provide overlapping views over nearly the whole unit sphere. The cameras are separated from each other to provide parallax. A near-infrared laser projection unit sends light out into the environment, which is reflected and viewed by the cameras. The laser projection system will create vertical lines, while the cameras will be displaced from each other horizontally. This relative shift of the lines, as viewed by different cameras, enables the lines to be triangulated in 3D space. At each point in time, a vertical stripe of the world will be triangulated. Over time, the laser line will be rotated over all yaw angles to provide full a 360 degree range.
    Type: Application
    Filed: July 26, 2018
    Publication date: February 28, 2019
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy, Raymond Paul Wilhelm, III
  • Patent number: 10200675
    Abstract: The invention presents an omnidirectional system capable of collecting horizontal disparities in multiple angles. The user of the display system will be able to move its head, changing yaw and tilt. Another incarnation to the invention also allows for roll. The system is composed of a series of prisms and/or mirrors arranged in a circular pattern. The prisms or mirrors provide a 90 degree shift of the imagery collected, enabling a single camera to perform the image acquisition.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: February 5, 2019
    Assignee: ROBOTIC RESEARCH, LLC
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20190023903
    Abstract: A system for localizing a swarm of robotic platforms utilizing ranging sensors. The swarm is localized by purposely leaving some of the platforms of the swarm stationary, providing localization to the moving ones. The platforms in the swarm can alternate between a stationary and moving state.
    Type: Application
    Filed: September 9, 2017
    Publication date: January 24, 2019
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy, Joseph Putney, Anne Rachel Schneider
  • Publication number: 20190023902
    Abstract: A system for localizing a swarm of robotic platforms utilizing ranging sensors. The swarm is localized by purposely leaving some of the platforms of the swarm stationary, providing localization to the moving ones. The platforms in the swarm can alternate between a stationary and moving state.
    Type: Application
    Filed: September 9, 2017
    Publication date: January 24, 2019
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy, Joseph Putney, Anne Rachel Scheider
  • Publication number: 20180311085
    Abstract: A system allowing a wheelchair bound user to embark and disembark a vehicle without assistance. The user requests entry into the vehicle. The vehicle is manually or autonomously driven into a safe position for ingress. The vehicle checks if the area is clear to open the door. The vehicle autonomously opens the door. The vehicle verifies the person is wheelchair bound. If the passenger is wheelchair bound, then: the vehicle verifies if the area is clear to deploy an inclined ramp or lift. The vehicle deploys the inclined ramp or lift. The vehicle waits until the user is on top of the lift and starts lifting the wheelchair bound person. The vehicle waits until the user at the correct height and transitions from the lift/ramp into the securement station inside of the vehicle. The vehicle verifies that the wheelchair is properly positioned for securement. The vehicle secures the wheel chair.
    Type: Application
    Filed: February 26, 2018
    Publication date: November 1, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy, Joseph Putney, John Keyser
  • Publication number: 20180312066
    Abstract: The invention being presented uses the motors already included in an electric vehicle to charge its batteries while in tow. The charging process provided by the invention is compatible with the charging speed of current battery technology. It will provide an effective way of charging vehicles in theater, when other sources of electrical energy may not be available. Moreover, the proposed system can actually extend the brake life of the towing vehicle and improve performance boundaries of the overall system.
    Type: Application
    Filed: February 26, 2018
    Publication date: November 1, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20180272401
    Abstract: A metal fused, deposition printer, that uses the thixotropic (or other) properties of a metal (or alloy) to control the viscosity of the material being deposited. In the invention presented in this patent, the viscosity of the metal is controlled by shearing it before, during, or after the deposition process. Since thixotropic (or other) properties allow for the control of the viscosity separately from the temperature, the taught invention allows for precise control of the temperature differential between the layer being deposited, and the substrate layer.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 27, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20180164802
    Abstract: The proposed method outlines a new control mechanism well-suited for small, unmanned aerial vehicles traversing in a GPS-denied areas. It has the strong advantage of simplifying the interface, so that even an untrained operator can handle the difficult, dynamic problems encountered in closed quarters. The proposed system seamlessly integrates point-and-click control with way-point navigation, in an intuitive interface. An additional advantage of the proposed system is that it adds minimal hardware to the payload of the UAV, and can possibly, strongly diminish the bandwidth and delay effects of the communication channel.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 9969081
    Abstract: Static multi-registration performs a delayed convoy mission from a recorded path. The data recorded for delayed convoy includes both positions traversed by the vehicle and the obstacles sensed as it drove along the path and generates a new path file in this format that is used by the vehicle to follow the desired route. The data is processed before it is passed to the vehicle to be followed. Paths are processed to determine where they cross each other. These intersection points and the path data are used to create an interconnected graph of path segments. A multi-registration planner uses that information on the length and directionality of the path segments to compute the best route between two intersections. The route generated by the planner guides the merging of position and obstacle data from several recorded paths into a single record used by the vehicle to follow the desired route.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: May 15, 2018
    Inventors: Alberto Daniel Lacaze, Karl Murphy, Steven Anthony Legowik, Shima Rayej
  • Publication number: 20180117981
    Abstract: A vehicle capable of multiple varieties of locomotion having a main body; a plurality of motors and blades providing flying capability; each motor being associated with and powering a blade assembly; two legs extending from opposing sides of the main body creating a ground propulsion system. The ground propulsion system having two legs; each leg connected to a track body at the opposing leg end; each track body comprised of a plurality of drive gears; each track body connected to and retaining a track providing ground propulsion. The vehicle can either drive or fly based on its base structure, in additional to carrying a payload. The payload is carried below the main body of the vehicle and between the tracks or running gear. When the vehicle is in flight, the tracks are able to rotate up into a fly/flight mode to protect the blades during flight.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 3, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20180117980
    Abstract: A vehicle capable of multiple varieties of locomotion having a main body; a plurality of motors and blades providing flying capability; each motor being associated with and powering a blade assembly; two legs extending from opposing sides of the main body creating a ground propulsion system. The ground propulsion system having two legs; each leg connected to a track body at the opposing leg end; each track body comprised of a plurality of drive gears; each track body connected to and retaining a track providing ground propulsion. The vehicle can either drive or fly based on its base structure, in additional to carrying a payload. The payload is carried below the main body of the vehicle and between the tracks or running gear. When the vehicle is in flight, the tracks are able to rotate up into a fly/flight mode to protect the blades during flight.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 3, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 9888228
    Abstract: The invention presents an omnidirectional system capable of collecting horizontal disparities in multiple angles. The user of the display system will be able to move its head, changing yaw and tilt. Another incarnation to the invention also allows for roll. The system is composed of a series of prisms and/or mirrors arranged in a circular pattern. The prisms or mirrors provide a 90 degree shift of the imagery collected, enabling a single camera to perform the image acquisition.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: February 6, 2018
    Assignee: ROBOTIC RESEARCH, LLC
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 9880551
    Abstract: The proposed method outlines a new control mechanism well-suited for small, unmanned aerial vehicles traversing in a GPS-denied areas. It has the strong advantage of simplifying the interface, so that even an untrained operator can handle the difficult, dynamic problems encountered in closed quarters. The proposed system seamlessly integrates point-and-click control with way-point navigation, in an intuitive interface. An additional advantage of the proposed system is that it adds minimal hardware to the payload of the UAV, and can possibly, strongly diminish the bandwidth and delay effects of the communication channel.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: January 30, 2018
    Assignee: ROBOTIC RESEARCH, LLC
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Publication number: 20180003826
    Abstract: Atomic clocks (at both the receiver and emitter) are used to obfuscate the location of the receiver by providing a different mechanism to synchronize (other than the direct reception). Using this approach, there is no need for the emitter to emit directly to the receiver; only the reflection is necessary, and therefore, the location of the receiver (or receivers) is better obfuscated. Phased antenna arrays are used in RADAR for a variety of applications, including steering of beams and increasing the “aperture” of the antenna for Synthetic Aperture Radar (SAR). The relative position of the emitters is known by means of using a Navigation unit. The beam-steering phase shifts are dynamically computed using the position of the emitters, and the atomic clock is used to synchronize the phase shifts.
    Type: Application
    Filed: June 7, 2016
    Publication date: January 4, 2018
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy, Raymond Paul Wilhelm, III
  • Publication number: 20170305053
    Abstract: A device is described where an operator uses a handheld nozzle that deposits new material onto a part. The process can be used to create new parts from a substrate, or to repair parts. The device automatically maps the physical part and matches the physical part against a model of the desired part. As the operator moves the nozzle over the part, the device automatically computes the amount of material necessary to modify the current part to match the model of the desired part. This method can be used for spraying or spray-casting metal, ceramics, and other materials. The described process and device automates this process, and simplifies the operator's involvement. Moreover, because the device can measure the part as the material is being deposited, the resulting part is more likely to more closely resemble the original part both in aesthetics and physical properties.
    Type: Application
    Filed: January 21, 2017
    Publication date: October 26, 2017
    Inventors: Alberto Daniel Lacaze, Karl Murphy
  • Publication number: 20170246813
    Abstract: An apparatus and method for multi-stage printing teaches means for removing and replacing a printed component during the printing process and accurately placing the component in the printer for continuation of the printing process. This can be accomplished through the use of a scanner, probe machine, or scanning Additionally, the present invention teaches the use of heating means in combination with a 3D printer to overcome additional issues with multi-sage printing.
    Type: Application
    Filed: May 13, 2017
    Publication date: August 31, 2017
    Inventors: Alberto Daniel Lacaze, Karl Murphy
  • Publication number: 20170249809
    Abstract: The Canine Handler Operations Positioning System (the Inventors) taught by the present invention consists of one or more dog-worn sensor, one or more handler's shoe-worn sensor, and algorithms for maintaining localization of units of canines and handlers traveling in GPS and GPS-denied areas. The present invention adapts the localization algorithms from the human-based system to dogs, increase performance, reduce SWAP, and further refine the system based on user feedback. The human worn system is modified for the human handler for maximum operational practicality in regard to batteries, size, and interoperability to a radio. The Canine Handler Operations Positioning System (the Inventors) focuses on developing the dog-worn positioning system, modifying the handler's positioning sensor if needed, and integrating the system with an OCU. The complete the Inventors system would provide a positioning solution for both the dog(s) and handler(s).
    Type: Application
    Filed: May 13, 2017
    Publication date: August 31, 2017
    Inventors: Alberto Daniel Lacaze, Karl Nicholas Murphy
  • Patent number: 9746330
    Abstract: UMAPS is a multifaceted system that can be robot-mounted, human-worn, or canine carried. UMAPS produces real-time, 3D mapping and localization for the user as they move throughout a GPS-denied environment (e.g. buildings, caves, or tunnels). An Operator Control Unit (OCU) displays information collected by UMAPS; 2D floorplans; 3D textured-enriched surfaces of the structure's interior; and the location of the users within that structure. UMAPS has an open architecture that allows it to function with any OCU. UMAPS has three distinct subsystems: obstacle maps for robot mobility, mapping, and positioning.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: August 29, 2017
    Assignee: Robotic Research, LLC
    Inventors: Alberto Daniel Lacaze, Karl Murphy, Kyle Smith