Patents by Inventor Alberto Peralta

Alberto Peralta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230087951
    Abstract: A wireless receiver and transmission systems include a receiver antenna, a sensor, a demodulation circuit, and a controller. The sensor is configured to detect electrical information superimposed on an AC wireless signal. The demodulation circuit is configured to receive the electrical information from the at least one sensor, apply automatic bias control and gain control to generate modified electrical information, detect a change in the modified electrical information and determine if the change in the modified electrical information meets or exceeds one of a rise threshold or a fall threshold. If the change exceeds one of the rise threshold or the fall threshold, an alert is generated. Alerts are decoded into the electrical information.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 23, 2023
    Inventors: Alberto Peralta, Anna Oleksiewicz, Michael Katz, Md. Nazmul Alam
  • Publication number: 20230087403
    Abstract: A wireless power transmission system includes a transmitter antenna, a sensor, a demodulation circuit, and a transmitter controller. The sensor is configured to detect electrical information indicative of data signals encoded in the transmission by a receiver. The demodulation circuit is configured to apply automatic bias control and gain control to the electrical information to generate a modified electrical information signal, detect a change in the modified electrical information signal, and generate alerts based on said change, indicative of the data signals. The transmitter controller is configured to perform a beaconing sequence to determine a coupling between the transmitter antenna and the at least one other antenna, determine the automatic bias control and the automatic gain control, for the demodulation circuit based on the beaconing sequence, receive the plurality of data alerts from the demodulation circuit, and decode the plurality of data alerts into the wireless data signals.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 23, 2023
    Inventors: Alberto Peralta, Michael Katz
  • Publication number: 20230082987
    Abstract: An electrically conductive material configured having at least one opening of various unlimited geometries extending through its thickness is provided. The opening is designed to modify eddy currents that form within the surface of the material from interaction with magnetic fields that allow for wireless energy transfer therethrough. The opening may be configured as a cut-out, a slit or combination thereof that extends through the thickness of the electrically conductive material. The electrically conductive material is configured with the cut-out and/or slit pattern positioned adjacent to an antenna configured to receive or transmit electrical energy wirelessly through near-field magnetic coupling (NEMC). A magnetic field shielding material, such as a ferrite, may also be positioned adjacent to the antenna. Such magnetic shielding materials may be used to strategically block eddy currents from electrical components and circuitry located within a device.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 16, 2023
    Inventors: Alberto Peralta, Md. Nazmul Alam, Vinit Singh, Sina Haji Alizad
  • Publication number: 20230080169
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 16, 2023
    Inventors: Alberto Peralta, Md. Nazmul Alam, Jacob D. Babcock, Vinit Singh, Christine A. Frysz
  • Publication number: 20230079549
    Abstract: A wireless receiver system, configured to receive both electrical data signals and electrical energy, includes a first receiver antenna, configured to receive one or both of the electrical data signals and the electrical energy, and a power conditioning system in electrical connection with the first receiver antenna, configured to receive electrical energy from the first receiver antenna. The wireless receiver system further includes a second receiver antenna configured to receive the electrical data signals and a receiver controller operatively associated with the first receiver antenna and the second receiver antenna and configured to determine switching instructions. The wireless receiver system further includes a switch operatively associated with the receiver controller and configured to switch receiving operations between the first and second receiver antennas based, at least in part, on the switching instructions.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 16, 2023
    Inventors: Jason Luzinski, Alberto Peralta, Pavel Shostak, Jacob Babcock
  • Publication number: 20230071605
    Abstract: A kitchen appliance is disclosed includes a first electrical component, a second electrical component, and a wireless power receiver system. The wireless power receiver system includes a first receiver antenna configured to couple with a first transmission antenna and receive virtual AC power signals from the first transmission antenna. A second receiver antenna is configured to couple with a second transmission antenna and receive virtual DC power signals from the second transmitter antenna. A first receiver power conditioning system is configured to receive the virtual AC power signals, convert the virtual AC power signals to AC received power signals, and provide the AC received power signals to power the first electrical component. The second receiver power conditioning system configured to receive the virtual DC power signals, convert the virtual DC power signals to DC received power signals, and provide the DC received power signals to power the second electrical component.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 9, 2023
    Inventors: Mark Melone, Alberto Peralta, Michael Katz
  • Publication number: 20230076836
    Abstract: A method for operating a wireless power transfer system includes selecting an operating mode from a plurality of transmission modes, which includes, at least, a first operating mode having a first power level and a first data rate and a second operating mode having a second power level and a second power rate, wherein the first data rate is greater than the second data rate and the first power level is less than the second power level. The method further includes performing, one or more of encoding the wireless data signals, decoding the wireless data signals, receiving the wireless data signals, transmitting the wireless data signals or combinations thereof. The method further includes driving a transmitter antenna of the wireless power transmission system, by the amplifier, based on a driving signal generated in accordance with the selected operating m.
    Type: Application
    Filed: August 15, 2022
    Publication date: March 9, 2023
    Inventors: Jason Luzinski, Alberto Peralta
  • Publication number: 20230065697
    Abstract: A wireless transmission system includes a transmitter antenna, a sensor, a demodulation circuit, and a transmitter controller. The sensor is configured to detect electrical information associated with AC wireless signals, the electrical information including, at least, a voltage of the AC wireless signals. The demodulation circuit is configured to receive the electrical information from the at least one sensor, detect a change in the electrical information, determine if the change in the electrical information meets or exceeds one of a rise threshold or a fall threshold, if the change exceeds one of the rise threshold or the fall threshold, generate an alert, and output a plurality of data alerts. The transmitter controller is configured to receive the plurality of data alerts from the demodulation circuit, and decode the plurality of data alerts into the wireless data signals.
    Type: Application
    Filed: April 11, 2022
    Publication date: March 2, 2023
    Inventors: Alberto Peralta, Michael Katz, Md. Nazmul Alam
  • Publication number: 20230063324
    Abstract: A wireless receiver system includes a receiver antenna, a sensor, a demodulation circuit, and a receiver controller. The sensor is configured to detect electrical information associated with AC wireless signals, the electrical information including, at least, a voltage of the AC wireless signals. The demodulation circuit is configured to receive the electrical information from the at least one sensor, detect a change in the electrical information, determine if the change in the electrical information meets or exceeds one of a rise threshold or a fall threshold, if the change exceeds one of the rise threshold or the fall threshold, generate an alert, and output a plurality of data alerts. The receiver controller is configured to receive the plurality of data alerts from the demodulation circuit, and decode the plurality of data alerts into the wireless data signals.
    Type: Application
    Filed: April 11, 2022
    Publication date: March 2, 2023
    Inventors: Alberto Peralta, Michael Katz, Md. Nazmul Alam
  • Patent number: 11569694
    Abstract: A wireless receiver system includes a receiver antenna, a sensor, a demodulation circuit, and a receiver controller. The sensor is configured to detect electrical information superimposed on an AC wireless signal. The demodulation circuit is configured to receive the electrical information from the at least one sensor, apply automatic bias control and gain control to generate modified electrical information, detect a change in the modified electrical information and determine if the change in the modified electrical information meets or exceeds one of a rise threshold or a fall threshold. If the change exceeds one of the rise threshold or the fall threshold, an alert is generated. Alerts are decoded into the electrical information.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 31, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Anna Oleksiewicz, Michael Katz, Md. Nazmul Alam
  • Publication number: 20230017240
    Abstract: Eyewear and receptacles for housing such eyewear include components of a wireless power transfer system. The eyewear includes a receiver system for receiving power from a transmission system associated with the receptacle(s). The receiver system includes at least one receiver antenna, for receiving wireless power from the transmission system, and a repeater antenna for repeating the wireless power signal to the receiver antenna. The receiver antenna is positioned proximate to a first arm of the eyewear and the repeater is positioned proximate to a second arm of the eyewear. Positioning of the receiver and repeater antennas allows for positional freedom of the eyewear and/or the arms of the eyewear, when mechanically received by the receptacle.
    Type: Application
    Filed: August 1, 2022
    Publication date: January 19, 2023
    Inventors: Pratik Halyal, Pavel Shostak, Alberto Peralta
  • Patent number: 11545857
    Abstract: A reconfigurable wireless power transfer system includes a first wireless transmission system, one or more secondary wireless transmission systems, and at least one wireless receiver system. The first wireless transmission system is configured to receive input power from an input power source, generate wireless power signals, and couple with one or more other antennas. Each secondary wireless transmission systems is configured to couple with one or more of another secondary transmission antenna, the first transmission antenna, and/or one or more receiver antennas. The secondary wireless transmission systems receive the AC wireless signals from the first wireless transmission system and repeat the AC wireless signals to one or more secondary transmission antennas, receiver antennas, or combinations thereof. The one or more receiver antennas are configured to receive the AC wireless signals to provide electrical power to a load operatively associated with a computer peripheral.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 3, 2023
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Md. Nazmul Alam
  • Publication number: 20220407358
    Abstract: The present application relates to an apparatus which comprises a wireless power transfer (WPT) system. This system comprises features which allow it to transfer more power wirelessly at extended distances than other systems operating in the same frequency range. The system possesses heat dissipation features; these features allow it to operate effectively in elevated-temperature environments, and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also might include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system can also comprise adaptations to reduce electromagnetic interference (EMI), and can comprise specially shaped components with magnetic/ferrimagnetic properties that enhance performance. Other potential features include power conditioning by combining, within one circuit or one board, multiple elements that protect against excessive current, over-voltage, and/or reverse voltage.
    Type: Application
    Filed: March 4, 2022
    Publication date: December 22, 2022
    Inventors: Pavel Shostak, Oleg Los, Unnati Wadkar, Jason Luzinski, Nazmul Alam, Mark D. Melone, Matt Zamborsky, Jacob Babcock, Alberto Peralta, Christine Frysz
  • Patent number: 11527912
    Abstract: A wireless power transfer system includes an antenna base having a charger surface configured substantially as a concave spherical section and a first antenna comprising a spiral wire coil conforming to the charger surface of the antenna base. A target item includes an interface surface configured as a convex spherical section substantially matching the concave spherical section of the charger base. A second antenna is located within the target item and adjacent to the interface surface such that when the target item is placed in the antenna base with the interface surface mated to the charger surface, the first and second antennas are within inductive coupling range for wireless power transfer between the antennas.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 13, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Md. Nazmul Alam, Alberto Peralta, Andrew Kovacs
  • Publication number: 20220368168
    Abstract: A wireless power transmission system includes a first antenna, a second antenna, a controller, a first power conditioning system, and a second power conditioning system. The controller is configured to determine a first driving signal for driving the first antenna based on a first operating frequency, a virtual AC power frequency, a variable slot length, and slot timing, and determine a second driving signal for driving the second antenna based on a second operating frequency, the slot length, and the slot timing. The first power conditioning system is configured to receive the first driving signal to generate the virtual AC power signals at the first operating frequency, the virtual AC power signals having peak voltages rising and falling based on the virtual AC power frequency. The second power conditioning system is configured to receive the second driving signal to generate the virtual DC power signals at the second operating frequency.
    Type: Application
    Filed: March 29, 2022
    Publication date: November 17, 2022
    Inventors: Mark Melone, Alberto Peralta, Michael Katz
  • Patent number: 11502547
    Abstract: A wireless electrical energy transmission system is provided. The system comprises a wireless transmission base configured to wirelessly transmit electrical energy or data via near field magnetic coupling to a receiving antenna configured within an electronic device. The wireless electrical energy transmission system is configured with at least one transmitting antenna and a transmitting electrical circuit positioned within the transmission base. The transmission base is configured so that at least one electronic device can be wirelessly electrically charged or powered by positioning the at least one device external and adjacent to the transmission base.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: November 15, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Md. Nazmul Alam, Ajit Rajagopalan, Jacob D. Babcock, Christine A. Frysz, Vinit Singh
  • Patent number: 11489555
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of amplitude shift keying (ASK) wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 1, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Pavel Shostak
  • Patent number: 11489372
    Abstract: Wireless power transfer systems, disclosed, include one or more circuits to facilitate high power transfer at high frequencies. Such wireless power transfer systems include a damping circuit, configured to dampen a wireless power signal such that communications fidelity is upheld at high power. The damping circuit includes at least a damping transistor that is configured to receive, from the transmitter controller, a damping signal for switching the transistor to control damping during transmission of the wireless data signals. Utilizing such systems enables wireless power transfer at high frequency, such as 13.56 MHz, at voltages over 1 Watt, while maintaining fidelity of in-band communications associated with the higher power wireless power signal.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: November 1, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Alberto Peralta, Pavel Shostak
  • Publication number: 20220344818
    Abstract: Various embodiments of a multi-mode antenna are described. The antenna is preferably constructed having a first inductor coil and a second inductor coil. A plurality of shielding materials are positioned throughout the antenna to minimize interference of the magnetic fields that emanate from the coils from surrounding materials. The antenna comprises a coil control circuit having at least one of an electric filter and an electrical switch configured to modify the electrical impedance of either or both the first and second coils.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 27, 2022
    Inventors: Vinit Singh, Ajit Rajagopalan, Alberto Peralta, Md. Nazmul Alam, Christine A. Frysz, Jason Luzinski, Glenn Riese, Jacob Babcock, Pavel Shostak
  • Patent number: 11483032
    Abstract: A method for operating a wireless power transmission system includes providing a driving signal for driving a transmission antenna of the wireless power transmission system, the driving signal based, at least, on an operating frequency for the wireless power transmission system. The method further includes inverting, by the at least one transistor, a direct current (DC) input power signal to generate an AC wireless signal at the operating frequency, based on provided driving signals. The method includes receiving, at a damping circuit, damping signals configured for switching the damping transistor to one of an active mode and an inactive mode to control signal damping, wherein the damping signals switch to the active mode periodically. The method further includes selectively damping, by the damping circuit, the AC wireless signals, during transmission of the wireless data signals if the damping signals set the damping circuit to the active mode.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 25, 2022
    Assignee: NuCurrent, Inc.
    Inventors: Dennis Kapolnek, Alberto Peralta, Jason Luzinski