Patents by Inventor Albin Peters

Albin Peters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10421046
    Abstract: An method of making a porous asymmetric membrane involves dissolving a poly(phenylene ether), poly(phenylene ether) copolymer, polyethersulfone, polysulfone, polyphenylsulfone, polyimide, polyetherimide, polyvinylidene fluoride, or a combination thereof in a water-miscible polar aprotic solvent to provide a membrane-forming composition; and phase-inverting the membrane-forming composition in a first non-solvent composition composed of water, a water-miscible polar aprotic solvent, or a mixture thereof, and a polymer additive dissolved in the first non-solvent composition. The method can be a method of making a hollow fiber by coextrusion through a spinneret having an annulus and a bore, including coextruding the membrane-forming composition through the annulus, and the first non-solvent composition through the bore, into a second non-solvent composition composed of water, a water-miscible polar aprotic solvent, or a mixture thereof to form the hollow fiber.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: September 24, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger
  • Patent number: 10358517
    Abstract: An amphiphilic block copolymer comprises a poly(phenylene ether) block or a poly(phenylene ether) copolymer block and a hydrophilic block or graft. A method of making the amphiphilic block copolymer comprises polymerization of a hydrophilic ethylenically unsaturated monomer in the presence of poly(phenylene ether) or a poly(phenylene ether) copolymer to make the amphiphilic block copolymer. A porous asymmetric membrane comprises a poly(phenylene ether) or poly(phenylene ether) copolymer, and the amphiphilic block copolymer comprising a poly(phenylene ether) block or a poly(phenylene ether) copolymer block, and a hydrophilic block or graft. The porous asymmetric membrane is made by phase-inversion of a dope solution of the poly(phenylene ether) or poly(phenylene ether) copolymer and the amphiphilic block copolymer in a coagulation bath.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: July 23, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Patent number: 10307717
    Abstract: A porous membrane is made from a poly(phenylene ether) copolymer containing 10 to 40 mole percent repeat units derived from 2-methyl-6-phenylphenol and 60 to 90 mole percent repeat units derived from 2,6-dimethylphenol; and a block copolymer containing backbone or pendant blocks of poly(C2-4 alkylene oxide). The porous membrane is made by dissolving the poly(phenylene ether) copolymer in a water-miscible polar aprotic solvent to form a membrane-forming composition; and phase-inverting the membrane forming-composition in a first non-solvent composition to form the porous membrane. A method of making a hollow fiber by coextrusion through a spinneret having an annulus and a bore, includes coextruding the membrane-forming composition through the annulus, and a first non-solvent composition through the bore, into a second non-solvent composition to form the hollow fiber.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 4, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Joris de Grooth, Johannes de Brouwer, Miejuan Zhou, Pooja Bajaj, Rachel Elizabeth Halbfinger, Kristi Jean Narang
  • Patent number: 10252221
    Abstract: A porous asymmetric membrane comprises a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer; and a polymer additive. A separation module can be fabricated from the porous asymmetric membrane. A method of forming the porous asymmetric membrane comprises: dissolving a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer and, a polymer additive in a water-miscible polar aprotic solvent to form a porous asymmetric membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous asymmetric membrane. The polymer additive comprises hydrophilic functional groups, copolymerized hydrophilic monomers, or blocks of hydrophilic monomer repeat units. For example, the polymer additive can comprise a hydrophilic polymer or amphiphilic polymer. The porous asymmetric membrane can be a flat membrane or hollow fiber.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: April 9, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Patent number: 10252220
    Abstract: A porous asymmetric membrane comprises a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer; and a polymer additive. A separation module can be fabricated from the porous asymmetric membrane. A method of forming the porous asymmetric membrane comprises: dissolving a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer and, a polymer additive in a water-miscible polar aprotic solvent to form a porous asymmetric membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous asymmetric membrane. The polymer additive comprises hydrophilic functional groups, copolymerized hydrophilic monomers, or blocks of hydrophilic monomer repeat units. For example, the polymer additive can comprise a hydrophilic polymer or amphiphilic polymer. The porous asymmetric membrane can be a flat membrane or hollow fiber.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: April 9, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Patent number: 10207230
    Abstract: A porous composite membrane includes a porous support layer of a poly(phenylene ether) or poly(phenylene ether) copolymer; and an amphiphilic copolymer having a hydrophobic block and a hydrophilic block or graft, wherein the hydrophobic block includes a polystyrene block, a poly(phenylene ether) block, or a poly(phenylene ether) copolymer block; and an ultrathin, cross-linked, water permeable layer, which is the reaction product of an electrophilic monomer and a nucleophilic monomer, in contact with a side of the porous support layer. The reaction product can be a polyamide that is the interfacial condensation product of: an aromatic, polyfunctional acyl halide comprising of 3 to 6 acyl halide groups per aromatic ring and an aromatic polyamine comprising at least two primary amine groups and a maximum number of primary amine groups that is less than or equal to the number of acyl halide groups on the polyfunctional acyl halide.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 19, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Patent number: 10080996
    Abstract: An asymmetric membrane having a substantially non-porous surface layer is made by a method including: dissolving a poly(phenylene ether) copolymer in a solvent mixture including a first solvent and a second solvent to provide a membrane-forming composition; and phase-inverting the membrane forming composition in a first non-solvent to form the membrane comprising a substantially non-porous surface layer. The first solvent is a water-miscible polar aprotic solvent, and the second solvent is a polar solvent having two to eight carbon atoms.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 25, 2018
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Rachel Elizabeth Halbfinger, Matias Bikel, Pooja Bajaj
  • Publication number: 20180154315
    Abstract: An method of making a porous asymmetric membrane involves dissolving a poly(phenylene ether), poly(phenylene ether) copolymer, polyethersulfone, polysulfone, polyphenylsulfone, polyimide, polyetherimide, polyvinylidene fluoride, or a combination thereof in a water-miscible polar aprotic solvent to provide a membrane-forming composition; and phase-inverting the membrane-forming composition in a first non-solvent composition composed of water, a water-miscible polar aprotic solvent, or a mixture thereof, and a polymer additive dissolved in the first non-solvent composition. The method can be a method of making a hollow fiber by coextrusion through a spinneret having an annulus and a bore, including coextruding the membrane-forming composition through the annulus, and the first non-solvent composition through the bore, into a second non-solvent composition composed of water, a water-miscible polar aprotic solvent, or a mixture thereof to form the hollow fiber.
    Type: Application
    Filed: April 22, 2016
    Publication date: June 7, 2018
    Applicant: Sabic Global Technologies B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger
  • Patent number: 9815031
    Abstract: A separation module that includes a porous membrane, where the porous membrane includes a poly(phenylene ether) copolymer containing 10 to 40 mole percent repeat units derived from 2-methyl-6-phenylphenol and 60 to 90 mole percent repeat units derived from 2,6-dimethylphenol; and a block copolymer containing backbone or pendant blocks of poly(C2-4 alkylene oxide). The separation module can be used in devices for wastewater treatment, water purification, desalination, separating water-insoluble oil from oil-containing wastewater, membrane distillation, sugar purification, protein concentration, enzyme recovery, dialysis, liver dialysis, or blood oxygenation.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: November 14, 2017
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Joris de Grooth, Johannes de Brouwer, Meijuan Zhou, Pooja Bajaj, Rachel Elizabeth Halbfinger, Kristi Jean Narang
  • Publication number: 20170282131
    Abstract: A separation module that includes a porous membrane, where the porous membrane includes a poly(phenylene ether) copolymer containing 10 to 40 mole percent repeat units derived from 2-methyl-6-phenylphenol and 60 to 90 mole percent repeat units derived from 2,6-dimethylphenol; and a block copolymer containing backbone or pendant blocks of poly(C2-4 alkylene oxide). The separation module can be used in devices for wastewater treatment, water purification, desalination, separating water-insoluble oil from oil-containing wastewater, membrane distillation, sugar purification, protein concentration, enzyme recovery, dialysis, liver dialysis, or blood oxygenation.
    Type: Application
    Filed: November 21, 2016
    Publication date: October 5, 2017
    Inventors: Albin Peter Berzinis, Joris de Grooth, Johannes de Brouwer
  • Publication number: 20170282128
    Abstract: A porous membrane is made from a poly(phenylene ether) copolymer containing 10 to 40 mole percent repeat units derived from 2-methyl-6-phenylphenol and 60 to 90 mole percent repeat units derived from 2,6-dimethylphenol; and a block copolymer containing backbone or pendant blocks of poly(C2-4 alkylene oxide). The porous membrane is made by dissolving the poly(phenylene ether) copolymer in a water-miscible polar aprotic solvent to form a membrane-forming composition; and phase-inverting the membrane forming-composition in a first non-solvent composition to form the porous membrane. A method of making a hollow fiber by coextrusion through a spinneret having an annulus and a bore, includes coextruding the membrane-forming composition through the annulus, and a first non-solvent composition through the bore, into a second non-solvent composition to form the hollow fiber.
    Type: Application
    Filed: November 21, 2016
    Publication date: October 5, 2017
    Inventors: Albin Peter Berzinis, Joris de Grooth, Johannes de Brouwer
  • Publication number: 20170056835
    Abstract: A porous asymmetric membrane comprises a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer; and a polymer additive. A separation module can be fabricated from the porous asymmetric membrane. A method of forming the porous asymmetric membrane comprises: dissolving a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer and, a polymer additive in a water-miscible polar aprotic solvent to form a porous asymmetric membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous asymmetric membrane. The polymer additive comprises hydrophilic functional groups, copolymerized hydrophilic monomers, or blocks of hydrophilic monomer repeat units. For example, the polymer additive can comprise a hydrophilic polymer or amphiphilic polymer. The porous asymmetric membrane can be a flat membrane or hollow fiber.
    Type: Application
    Filed: April 30, 2015
    Publication date: March 2, 2017
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Publication number: 20170043297
    Abstract: A porous membrane made from a poly(phenylene ether) copolymer has at least one of: a molecular weight cut off of less than 40 kilodaltons or a surface pore size of 0.001 to 0.1 micrometers. The porous membrane is made by dissolving the poly(phenylene ether) copolymer in a water-miscible polar aprotic solvent to form a porous membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous mem-brane. The porous membrane can be in the form of a sheet or a hollow fiber, and can be fabricated into separation modules.
    Type: Application
    Filed: May 1, 2015
    Publication date: February 16, 2017
    Inventors: Albin Peter Berzinis, Rachel Elizabeth Halbfinger, Matias Bikel, Pooja Bajaj
  • Publication number: 20170043301
    Abstract: A porous composite membrane includes a porous support layer of a poly(phenylene ether) or poly(phenylene ether) copolymer; and an amphiphilic copolymer having a hydrophobic block and a hydrophilic block or graft, wherein the hydrophobic block includes a polystyrene block, a poly(phenylene ether) block, or a poly(phenylene ether) copolymer block; and an ultrathin, cross-linked, water permeable layer, which is the reaction product of an electrophilic monomer and a nucleophilic monomer, in contact with a side of the porous support layer. The reaction product can be a polyamide that is the interfacial condensation product of: an aromatic, polyfunctional acyl halide comprising of 3 to 6 acyl halide groups per aromatic ring and an aromatic polyamine comprising at least two primary amine groups and a maximum number of primary amine groups that is less than or equal to the number of acyl halide groups on the polyfunctional acyl halide.
    Type: Application
    Filed: April 30, 2015
    Publication date: February 16, 2017
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Publication number: 20170036169
    Abstract: A porous membrane made from a poly(phenylene ether) copolymer has at least one of: a molecular weight cut off of less than 40 kilodaltons or a surface pore size of 0.001 to 0.1 micrometers. The porous membrane is made by dissolving the poly(phenylene ether) copolymer in a water-miscible polar aprotic solvent to form a porous membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous membrane. The porous membrane can be in the form of a sheet or a hollow fiber, and can be fabricated into separation modules.
    Type: Application
    Filed: April 30, 2015
    Publication date: February 9, 2017
    Applicant: Sabic Global Technologies B.V.
    Inventors: Albin Peter Berzinis, Rachel Elizabeth Halbfinger, Matias Bikel, Pooja Bajaj
  • Publication number: 20170037177
    Abstract: An amphiphilic block copolymer comprises a poly(phenylene ether) block or a poly(phenylene ether) copolymer block and a hydrophilic block or graft. A method of making the amphiphilic block copolymer comprises polymerization of a hydrophilic ethylenically unsaturated monomer in the presence of poly(phenylene ether) or a poly(phenylene ether) copolymer to make the amphiphilic block copolymer. A porous asymmetric membrane comprises a poly(phenylene ether) or poly(phenylene ether) copolymer, and the amphiphilic block copolymer comprising a poly(phenylene ether) block or a poly(phenylene ether) copolymer block, and a hydrophilic block or graft. The porous asymmetric membrane is made by phase-inversion of a dope solution of the poly(phenylene ether) or poly(phenylene ether) copolymer and the amphiphilic block copolymer in a coagulation bath.
    Type: Application
    Filed: April 30, 2015
    Publication date: February 9, 2017
    Applicant: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Publication number: 20170021310
    Abstract: A porous asymmetric membrane comprises a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer; and a polymer additive. A separation module can be fabricated from the porous asymmetric membrane. A method of forming the porous asymmetric membrane comprises: dissolving a hydrophobic polymer comprising a poly(phenylene ether) or poly(phenylene ether) copolymer and, a polymer additive in a water-miscible polar aprotic solvent to form a porous asymmetric membrane-forming composition; and phase-inverting the porous asymmetric membrane forming-composition in a first non-solvent composition to form the porous asymmetric membrane. The polymer additive comprises hydrophilic functional groups, copolymerized hydrophilic monomers, or blocks of hydrophilic monomer repeat units. For example, the polymer additive can comprise a hydrophilic polymer or amphiphilic polymer. The porous asymmetric membrane can be a flat membrane or hollow fiber.
    Type: Application
    Filed: May 1, 2015
    Publication date: January 26, 2017
    Inventors: Albin Peter Berzinis, Pooja Bajaj, Rachel Elizabeth Halbfinger, Matias Bikel
  • Publication number: 20170021311
    Abstract: An asymmetric membrane having a substantially non-porous surface layer is made by a method including: dissolving a poly(phenylene ether) copolymer in a solvent mixture including a first solvent and a second solvent to provide a membrane-forming composition; and phase-inverting the membrane forming composition in a first non-solvent to form the membrane comprising a substantially non-porous surface layer. The first solvent is a water-miscible polar aprotic solvent, and the second solvent is a polar solvent having two to eight carbon atoms.
    Type: Application
    Filed: April 30, 2015
    Publication date: January 26, 2017
    Inventors: Albin Peter Berzinis, Rachel Elizabeth Halbfinger, Matias Bikel, Pooja Bajaj
  • Patent number: 8969476
    Abstract: In one of its aspects the invention is directed to rubber modified thermoplastic resin compositions comprising discontinuous elastomeric phase particles derived from a unitary rubber substrate having at least a bimodal particle size distribution, wherein the elastomeric phase particles comprise a polymer having structural units derived from at least one (C1-C12)alkyl(meth)acrylate monomer and are dispersed in a rigid thermoplastic phase, wherein at least a portion of the rigid thermoplastic phase is grafted as a shell to elastomeric phase core particles, and wherein the rigid thermoplastic phase comprises structural units derived from at least one vinyl aromatic monomer, at least one monoethylenically unsaturated nitrile monomer and at least one (C1-C12)alkyl- or aryl-(meth)acrylate monomer.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 3, 2015
    Assignee: Sabic Global Technologies B.V.
    Inventors: Albin Peter Berzinis, James Edward Pickett
  • Patent number: 8153713
    Abstract: A core-shell particle is formed by a method that includes forming a crosslinked polyorganosiloxane core, reacting a graftlinking agent with the crosslinked polyorganosiloxane core, and polymerizing a poly(alkenyl aromatic) shell around the graftlinking agent-functionalized polyorganosiloxane core. The method produces a core-shell particle with improved adhesion between shell and core. The core-shell particle is useful as an impact modifier in thermoplastic compositions.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Amol Adhikrao Mohite, Jaykisor Pal, Sathya Narayanan, Satishkumar H. Mahanth, Albin Peter Berzinis, Shripathy Vilasagar