Patents by Inventor Alejandro Peralta

Alejandro Peralta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220016174
    Abstract: The present invention relates to the use of regenerative medicine in livestock farming, in particular to regenerative medicine for the care of livestock, and even more particularly to regenerative medicine in the care of milk-producing animals, including cattle. Specifically, the invention concerns a foetal mesenchymal stem cell (MSC) composition of allogenic origin, a treatment method and the use thereof in mastitis in milk-producing animals, including cattle, suffering from mastitis, to immunostimulate the animal, the MSC coming from foetal bovine adipose tissue. The composition can be administered via the intramammary route, exercising an immunomodulatory effect on the inflammatory response and strengthening antimicrobial activity against mastitis-causing pathogens in milk-producing animals with mastitis, thereby becoming an alternative to replacing and/or supplementing the use of antibiotics.
    Type: Application
    Filed: June 15, 2018
    Publication date: January 20, 2022
    Inventors: Oscar Alejandro PERALTA TRONCOSO, Cristian Gabriel TORRES MENDOZA
  • Publication number: 20210218368
    Abstract: A solid-state device chip including diodes (generating a higher or lower frequency output through frequency multiplication or mixing of the input frequency) and a novel on-chip diplexing design that allows combination of two or more multiplier or mixer structures operating at different frequency bands within the 50-5000 GHz range within a same chip and/or waveguide. The on-chip diplexing design consists of a single-substrate multiplier chip with two or more multiplying structures each one containing 2 or more Schottky diodes. The diodes in each structure are tuned to one portion of the target frequency band, resulting in the two or more structures working together as a whole as a large broadband multiplier or mixer. Thus, an increase in bandwidth from 10-15% (current state-of-the-art) to at least 40% is achieved. Depending on the target frequencies, each subset of diodes within the chip can be designed to work either as a doubler or a tripler.
    Type: Application
    Filed: November 9, 2020
    Publication date: July 15, 2021
    Applicant: California Institute of Technology
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Robert H. Lin, Alejandro Peralta
  • Patent number: 10100858
    Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 16, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 10075151
    Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 11, 2018
    Assignee: California Institute of Technology
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
  • Patent number: 9791321
    Abstract: A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: October 17, 2017
    Assignee: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Ken B. Cooper, Emmanuel Decrossas, John J. Gill, Cecile Jung-Kubiak, Choonsup Lee, Robert Lin, Imran Mehdi, Alejandro Peralta, Theodore Reck, Jose Siles
  • Publication number: 20170045065
    Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventors: Cecile JUNG-KUBIAK, Theodore RECK, Bertrand THOMAS, Robert H. LIN, Alejandro PERALTA, John J. GILL, Choonsup LEE, Jose V. SILES, Risaku TODA, Goutam CHATTOPADHYAY, Ken B. COOPER, Imran MEHDI
  • Patent number: 9512863
    Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 6, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 9461352
    Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: October 4, 2016
    Assignee: California Institute of Technology
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
  • Publication number: 20160149562
    Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
  • Publication number: 20140340178
    Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
    Type: Application
    Filed: April 15, 2014
    Publication date: November 20, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
  • Publication number: 20140147192
    Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 5997866
    Abstract: There is provided an antibody-based panel for detecting the cadherin family of proteins, the catenin family of proteins and the plaque family of proteins in tissues for the diagnosis and prognostic assessment of human tumors. The panel includes a set of antibody reagents, each antibody reagent is capable of recognizing a specific protein where the protein is a member of either the general cadherin family of proteins, the general catenin family of proteins or the general plaque family of proteins.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: December 7, 1999
    Inventors: Keith R. Johnson, Margaret J. Wheelock, Alejandro Peralta Soler, Karen A. Knudsen
  • Patent number: 5895748
    Abstract: There is provided an antibody-based panel for detecting the cadherin family of proteins, the catenin family of proteins and the plaque family of proteins in tissues for the diagnosis and prognostic assessment of human tumors. The panel includes a set of antibody reagents, each antibody reagent is capable of recognizing a specific protein where the protein is a member of either the general cadherin family of proteins, the general catenin family of proteins or the general plaque family of proteins.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: April 20, 1999
    Inventors: Keith R. Johnson, Margaret J. Wheelock, Alejandro Peralta Soler, Karen A. Knudsen