Patents by Inventor Aleksandar B. Feldman

Aleksandar B. Feldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210256170
    Abstract: A target system is coupled to a diagnosis engine that uses a lumped parameter model of the system for diagnosis. A proximity search in is performed in a computer-aided design model of the system to find groups of components that may be affected by resistive or parasitic interactions between the individual components in the groups. The lumped parameter model is augmented by adding elements that emulate the resistive or parasitic interactions between the individual components in the groups. The augmented lumped model is used by the diagnosis engine to perform diagnosis on the system.
    Type: Application
    Filed: February 18, 2020
    Publication date: August 19, 2021
    Inventors: Ion Matei, Saigopal Nelaturi, Johan de Kleer, Clinton Morris, Aleksandar B. Feldman
  • Patent number: 11010520
    Abstract: One embodiment provides a system and method for automated design of a computational system. During operation, the system obtains a component library comprising a plurality of computational components, receives design requirements, and builds a plurality of universal component cells. A respective universal component cell is configurable, by a selection signal, to behave as one of the computational components. The system further constructs a candidate computational system using the universal component cells, constructs a miter based on the design requirements and the candidate computational system, and converts the miter into a quantified satisfiability (QS) formula. The system generates a set of inputs that are a subset of all possible inputs of the QS formula, solves the QS formula by performing partial input expansion on the generated set of inputs to obtain at least one design solution, and outputs the at least one design solution to facilitate construction of the computational system.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: May 18, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Alexandre Campos Perez, Aleksandar B. Feldman, Johan de Kleer
  • Patent number: 10853540
    Abstract: One embodiment provides a method and a system for automated design of a computational system. During operation, the system obtains a component library comprising a plurality of computational components, receives design requirements of the computational system, and builds a plurality of universal component cells. A respective universal component cell is configurable, by a selection signal, to behave as one of the plurality of computational components. The system further constructs a candidate computational system using the plurality of universal component cells and encodes the received design requirements and the candidate computational system into a single logic formula. Variables within the single logic formula comprise at least inputs, outputs, and internal variables of the candidate computational system. The system solves the single logic formula to obtain at least one design solution for the computational system.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: December 1, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Aleksandar B. Feldman, Johan de Kleer, Ion Matei
  • Publication number: 20200210532
    Abstract: A method and system for automated design of a physical system are provided. During operation, the system obtains a component library comprising a plurality of physical components, receives design requirements of the physical system, and constructs an initial system model based on physical components in the component library and the design requirements. The system topology associated with the initial system model can include a large number of links that are sufficiently coupled to one another, and a respective link comprises one or more physical components. The system further performs an optimization operation comprising a plurality of iterations, with the system topology being updated at each iteration. Updating the system topology includes removing links and components from the system topology. The system then generates a final system model based on an outcome of the optimization operation and outputs a design solution of the physical system according to the final system model.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Ion Matei, Maksym I. Zhenirovskyy, Johan de Kleer, Aleksandar B. Feldman
  • Publication number: 20200210535
    Abstract: One embodiment provides a method and a system for automated design of a computational system. During operation, the system obtains a component library comprising a plurality of computational components, receives design requirements of the computational system, and builds a plurality of universal component cells. A respective universal component cell is configurable, by a selection signal, to behave as one of the plurality of computational components. The system further constructs a candidate computational system using the plurality of universal component cells and encodes the received design requirements and the candidate computational system into a single logic formula. Variables within the single logic formula comprise at least inputs, outputs, and internal variables of the candidate computational system. The system solves the single logic formula to obtain at least one design solution for the computational system.
    Type: Application
    Filed: December 31, 2018
    Publication date: July 2, 2020
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Aleksandar B. Feldman, Johan de Kleer, Ion Matei
  • Publication number: 20190383700
    Abstract: One embodiment can provide a method and a system for diagnosing faults in a physical system. During operation, the system obtains a time-domain model of the physical system and converts the time-domain model to the frequency domain to obtain a frequency-domain model of the physical system. The time-domain model can include one or more model parameters having known values. The system also obtains time-domain input and output signals and converts the time-domain input and output signals to the frequency domain to obtain frequency-domain input and output signals. The system identifies at least one model parameter having an expected value that is different from a known value of the at least one model parameter based on the frequency-domain model and the frequency-domain input and output signals, and generates a diagnostic output indicating at least one component within the physical system being faulty based on the identified at least one model parameter.
    Type: Application
    Filed: July 9, 2018
    Publication date: December 19, 2019
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Ion Matei, Aleksandar B. Feldman, Johan de Kleer