Patents by Inventor Aleksandar Pance

Aleksandar Pance has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190139317
    Abstract: A device can receive live video of a real-world, physical environment on a touch sensitive surface. One or more objects can be identified in the live video. An information layer can be generated related to the objects. In some implementations, the information layer can include annotations made by a user through the touch sensitive surface. The information layer and live video can be combined in a display of the device. Data can be received from one or more onboard sensors indicating that the device is in motion. The sensor data can be used to synchronize the live video and the information layer as the perspective of video camera view changes due to the motion. The live video and information layer can be shared with other devices over a communication link.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Applicant: Apple Inc.
    Inventors: Brett C. Bilbrey, Nicholas V. King, Aleksandar Pance
  • Patent number: 10248221
    Abstract: There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: April 2, 2019
    Assignee: Apple Inc.
    Inventors: Aleksandar Pance, Nicholas Vincent King, Duncan Kerr, Brett Bilbrey
  • Publication number: 20190073036
    Abstract: Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: Jeffrey Traer Bernstein, Avi Cieplinski, Brett W. Degner, Duncan Kerr, Patrick Kessler, Paul Puskarich, Marcelo H. Coelho, Aleksandar Pance
  • Patent number: 10176637
    Abstract: A device can receive live video of a real-world, physical environment on a touch sensitive surface. One or more objects can be identified in the live video. An information layer can be generated related to the objects. In some implementations, the information layer can include annotations made by a user through the touch sensitive surface. The information layer and live video can be combined in a display of the device. Data can be received from one or more onboard sensors indicating that the device is in motion. The sensor data can be used to synchronize the live video and the information layer as the perspective of video camera view changes due to the motion. The live video and information layer can be shared with other devices over a communication link.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: January 8, 2019
    Assignee: Apple, Inc.
    Inventors: Brett C. Bilbrey, Nicholas V. King, Aleksandar Pance
  • Patent number: 10120446
    Abstract: One embodiment of a haptic input device may include a receiver configured to receive a signal from a touch-based user interface device. The signal may include a control signal or a look-up value. The haptic input device may also include a decoder coupled to the receiver and configured to decode the signal from the touch-based user interface device, at least one sensor configured to determine at least one characteristic of the haptic input device, a controller coupled to the one or more sensors and configured to transmit a control signal, a haptic actuator coupled to the controller, and a transmitter coupled to the at least one sensor.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 6, 2018
    Assignee: Apple Inc.
    Inventors: Aleksandar Pance, Omar Sze Leung
  • Patent number: 10120450
    Abstract: Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 6, 2018
    Assignee: Apple Inc.
    Inventors: Jeffrey Traer Bernstein, Avi Cieplinski, Brett W. Degner, Duncan Kerr, Patrick Kessler, Paul Puskarich, Marcelo H. Coelho, Aleksandar Pance
  • Publication number: 20180182387
    Abstract: A modular controller may be mounted in an opening, such as a standard single wide or double wide electrical junction box, in a wall or other surface. The modular controller may include a power module and a front module. The power module may be mounted in the opening of the surface, and may be configured to provide electrical power to the front module. The front module may be detachably coupleable to the power module. The front module may be configured to receive audio commands, gesture commands, and/or presence input corresponding to a desired action, and may cause the action to be performed by a device of the front module and/or an external device. The front module may include various devices (e.g., components) capable of providing various functionalities, and may be selected for coupling to a power module in a particular location based at least in part on the functionalities.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 28, 2018
    Inventors: Albert John Yu Sam Chua, Pushkaraksha Gejji, Wilfrido Loor Canizares, Adam Kenneth Cybart, Aleksandar Pance, Marc Rene Walliser
  • Patent number: 10001885
    Abstract: The present disclosure addresses methods and apparatus facilitating capacitive sensing using a conductive surface, and facilitating the sensing of proximity to the conductive surface. The sensed proximity will often be that of a user, but can be another source of a reference voltage potential. In some examples, the described systems are capable of sensing capacitance (including parasitic capacitance) in a circuit that includes the outer conductive surface, and where that outer conductive surface is at a floating electrical potential. In some systems, the systems can be switched between two operating modes, a first mode in which the system will sense proximity to the conductive surface, and a second mode in which the system will use a capacitance measurement to sense contact with the conductive surface.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: June 19, 2018
    Assignee: Apple Inc.
    Inventors: Aleksandar Pance, Omar S. Leung, David T. Amm
  • Publication number: 20180129287
    Abstract: Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 10, 2018
    Inventors: Jeffrey Traer Bernstein, Avi Cieplinski, Brett W. Degner, Duncan Kerr, Patrick Kessler, Paul Puskarich, Marcelo H. Coelho, Aleksandar Pance
  • Publication number: 20180047320
    Abstract: A method and system for displaying images on a transparent display of an electronic device. The display may include one or more display screens as well as a flexible circuit for connecting the display screens with internal circuitry of the electronic device. Furthermore, the display screens may allow for overlaying of images over real world viewable objects, as well as a visible window to be present on an otherwise opaque display screen. Additionally, the display may include active and passive display screens that may be utilized based on images to be displayed.
    Type: Application
    Filed: October 24, 2017
    Publication date: February 15, 2018
    Inventor: Aleksandar Pance
  • Patent number: 9830844
    Abstract: A method and system for displaying images on a transparent display of an electronic device. The display may include one or more display screens as well as a flexible circuit for connecting the display screens with internal circuitry of the electronic device. Furthermore, the display screens may allow for overlaying of images over real world viewable objects, as well as a visible window to be present on an otherwise opaque display screen. Additionally, the display may include active and passive display screens that may be utilized based on images to be displayed.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: November 28, 2017
    Assignee: Apple Inc.
    Inventor: Aleksandar Pance
  • Patent number: 9829982
    Abstract: Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: November 28, 2017
    Assignee: Apple Inc.
    Inventors: Jeffrey Traer Bernstein, Avi Cieplinski, Brett W. Degner, Duncan Kerr, Patrick Kessler, Paul Puskarich, Marcelo H. Coelho, Aleksandar Pance
  • Publication number: 20170249122
    Abstract: A system for enhancing audio including a computer and an output device. The computer includes a sensor configured to determine a user location relative to the computer. The sensor is also configured to gather environment data corresponding to an environment of the computer. The computer also includes a processor in communication with the sensor and configured to process the user location and the environment data and adjust at least one of an audio output or a video output. The output device is in communication with the processor and is configured to output at least one of the audio output or the video output.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 31, 2017
    Inventors: Aleksandar Pance, Brett Bilbrey, Darbey E. Hadley, Martin E. Johnson, Ronald Nadim Isaac
  • Patent number: 9710061
    Abstract: A haptic feedback device configured to provide tactile or haptic feedback for an electronic device. The haptic device includes a platform operably secured to the electronic device to allow rotation about a center axis. An activating member is operably associated with the platform and configured to selectively cause the platform to rotate in a first direction. Also, the haptic feedback device includes a restoring member operably associated with the platform and configured to selectively return the platform to a first position after it has rotated for at least one of a select period of time or a select distance.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: July 18, 2017
    Assignee: APPLE INC.
    Inventors: Aleksandar Pance, Nicholas U. Webb, Sean A. Mayo
  • Patent number: 9677986
    Abstract: Described are techniques and systems for determining presence of airborne particles using one or more sensors on a user device. The airborne particles include, but are not limited to, smoke resulting from combustion, dust, fog, and so forth. In one implementation, an optical proximity sensor may be used to determine a distance to an object such as a ceiling. Smoke which collects on the ceiling reflects light that is detected by the proximity sensor and results in an apparent reduction in height. A notification of this change in height may be generated. In other implementations, other techniques may be used to detect airborne particles, such as images from a camera, dedicated particular sensors, and so forth. Information about airborne particles may aid user safety. For example, an alarm may be issued indicating a potential fire or unsafe level of pollution.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: June 13, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Leo Benedict Baldwin, Michael Serge Devyver, Aleksandar Pance
  • Publication number: 20170147087
    Abstract: There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
    Type: Application
    Filed: February 2, 2017
    Publication date: May 25, 2017
    Inventors: Aleksandar Pance, Nicholas Vincent King, Duncan Kerr, Brett Bilbrey
  • Patent number: 9658738
    Abstract: In some examples, a device presents a plurality of icons of items, such as applications, content items, etc., in a user interface. When determining how to present the icons, the device may refer to an access history that identifies which items of a plurality of items have been accessed on the device. One or more of the icons may be presented in a designated area of the interface based at least in part on a frequency with which the items corresponding to the one or more icons have been accessed on the device. In addition, the one or more icons may be selected for presentation in the designated area based at least in part on a current context of the device, which may include at least one of a current time, a current location of the device, or a current activity of a user of the device.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: May 23, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Chul Sung Park, Aleksandar Pance
  • Patent number: 9600037
    Abstract: There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: March 21, 2017
    Assignee: Apple Inc.
    Inventors: Aleksandar Pance, Nicholas Vincent King, Duncan Kerr, Brett Bilbrey
  • Publication number: 20170075424
    Abstract: Electronic devices may use touch pads that have touch sensor arrays, force sensors, and actuators for providing tactile feedback. A touch pad may be mounted in a computer housing. The touch pad may have a rectangular planar touch pad member that has a glass layer covered with ink and contains a capacitive touch sensor array. Force sensors may be mounted under each of the four corners of the rectangular planar touch pad member. The force sensors may be used to measure how much force is applied to the surface of the planar touch pad member by a user. Processed force sensor signals may indicate the presence of button activity such as press and release events. In response to detected button activity or other activity in the device, actuator drive signals may be generated for controlling the actuator. The user may supply settings to adjust signal processing and tactile feedback parameters.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Inventors: Jeffrey Traer Bernstein, Avi Cieplinski, Brett W. Degner, Duncan Kerr, Patrick Kessler, Paul Puskarich, Marcelo H. Coelho, Aleksandar Pance
  • Publication number: 20170068356
    Abstract: The present disclosure addresses methods and apparatus facilitating capacitive sensing using a conductive surface, and facilitating the sensing of proximity to the conductive surface. The sensed proximity will often be that of a user, but can be another source of a reference voltage potential. In some examples, the described systems are capable of sensing capacitance (including parasitic capacitance) in a circuit that includes the outer conductive surface, and where that outer conductive surface is at a floating electrical potential. In some systems, the systems can be switched between two operating modes, a first mode in which the system will sense proximity to the conductive surface, and a second mode in which the system will use a capacitance measurement to sense contact with the conductive surface.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Aleksandar PANCE, Omar S. LEUNG, David T. AMM