Patents by Inventor Alessandro E. Chiabrera

Alessandro E. Chiabrera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5774631
    Abstract: An unknown object is non-destructively and quantitatively evaluated for three-dimensional spatial distribution of a set of material constitutive parameters, using a multi-element array-source transducer and a multi-element array-detector transducer in spaced, mutually facing relation. The array-source transducer exposes the array-detector transducer to a set of source-field patterns pursuant to a set of electrical input signals. Either a known object or an unknown object positioned between these transducers will be the cause of scattering, thus presenting a scattered-field pattern to the array detector transducer, for each pattern of the set of source-field patterns. A computer, a signal processor and a neural network operate from detector response to each set of scattered-field patterns, in each of two modes.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: June 30, 1998
    Inventors: Alessandro E. Chiabrera, Bruno Bianco, Jonathan J. Kaufman
  • Patent number: 5752924
    Abstract: A method of ultrasonic bone-therapy subjects a bone to an ultrasonic excitation pulse signal of finite duration, supplied to a transducer next to the bone, and involving a sinusoidal signal in the ultrasonic region to approximately 2 MHz peculiarly modulated by a sinusoidal signal with frequency between about 0 Hz and about 25 kHz; the excitation signal is repeated in the range of 1 to 5000 Hz. The exposure time for therapy is chosen to be in the range of 5 minutes to 1 hour, for 1 to 3 times a day, for a period of days as necessary for healing or for promoting bone growth and ingrowth. An apparatus for implementing the above method for ultrasonic bone therapy is disclosed comprising a transducer having a transmitting and a receiving element, a special waveform signal generator, and a computer for performing the necessary operations defining a preferred treatment regime.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: May 19, 1998
    Assignee: OrthoLogic Corporation
    Inventors: Jonathan J. Kaufman, Alessandro E. Chiabrera
  • Patent number: 5547459
    Abstract: A method of ultrasonic bone-therapy subjects a bone to an ultrasonic excitation pulse signal of finite duration, supplied to a transducer next to the bone, and involving a sinusoidal signal in the ultrasonic region to approximately 2 MHz peculiarly modulated by a sinusoidal signal with frequency between about 0 Hz and about 25 kHz; the excitation signal is repeated in the range of 1 to 5000 Hz. The exposure time for therapy is chosen to be in the range of 5 minutes to 1 hour, for 1 to 3 times a day, for a period of days as necessary for healing or for promoting bone growth and ingrowth. An apparatus for implementing the above method for ultrasonic bone therapy is disclosed comprising a transducer having a transmitting and a receiving element, a special waveform signal generator, and a computer for performing the necessary operations defining a preferred treatment regime.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: August 20, 1996
    Assignee: Orthologic Corporation
    Inventors: Jonathan J. Kaufman, Alessandro E. Chiabrera
  • Patent number: 5458130
    Abstract: Non-invasive therapeutic treatment and/or quantitative evaluation of musculoskeletal tissue are performed in vivo by subjecting musculoskeletal tissue to an ultrasonic acoustic signal pulse of finite duration, and involving a composite sine-wave signal consisting of plural discrete frequencies that are spaced in the ultrasonic region to approximately 2 MHZ; the excitation signal is repeated substantially in the range 1 to 1000 Hz.In a quantitative evaluation, the composite-sine wave signal is supplied to one of two transducers on opposite sides of the musculoskeletal tissue, and the signal received by the other transducer is processed (a) to sequentially average the most recently received given number of successive signals to obtain an averaged per-pulse signal and (b) to produce a Fourier transform of the averaged per-pulse musculoskeletal tissue-transmitted signal.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: October 17, 1995
    Assignee: Orthologic Corporation
    Inventors: Jonathan J. Kaufman, Alessandro E. Chiabrera
  • Patent number: 5309898
    Abstract: Non-invasive therapeutic treatment and/or quantitative evaluation of bone tissue are performed in vivo, by subjecting bone to an ultrasonic acoustic signal pulse of finite duration, and involving a composite sine-wave signal consisting of plural discrete frequencies that are spaced in the ultrasonic region to approximately 2 MHz; the excitation signal is repeated substantially in the range 1 to 1000 Hz.In a quantitative evaluation, the composite sine-wave signal is supplied to one of two transducers on opposite sides of the bone, and the signal received by the other transducer is processed (a) to sequentially average the most recently received given number of successive signals to obtain an averaged per-pulse signal and (b) to produce a Fourier transform of the averaged per-pulse bone-transmitted signal.
    Type: Grant
    Filed: October 13, 1993
    Date of Patent: May 10, 1994
    Inventors: Jonathan J. Kaufman, Alessandro E. Chiabrera
  • Patent number: 5259384
    Abstract: Non-invasive, quantitative in-vivo ultrasonic evaluation of bone is performed by subjecting bone to an acoustic excitation pulse supplied to one of two transducers on opposite sides of the bone, and involving a composite sine-wave signal consisting of repetitions of plural discrete ultrasonic frequencies that are spaced at approximately 2 MHz. Signal-processing of received signal output of the other transducer is operative to sequentially average the most recently received given number of successive signals to obtain an averaged per-pulse signal and to produce a Fourier transform of this signal. In a separate operation, the same transducer responds to the transmission and reception of the same excitation signal via a medium of known acoustic properties and path length to establish a reference signal, which is processed to produce its Fourier transform.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: November 9, 1993
    Inventors: Jonathan J. Kaufman, Alessandro E. Chiabrera