Patents by Inventor Alessandro Tocchio

Alessandro Tocchio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10501310
    Abstract: A MEMS resonator is equipped with a substrate, a moving structure suspended above the substrate in a horizontal plane formed by first and second axes, having first and second arms, parallel to one another and extending along the second axis, coupled at their respective ends by first and second transverse joining elements, forming an internal window. A first electrode structure is positioned outside the window and capacitively coupled to the moving structure. A second electrode structure is positioned inside the window. One of the first and second electrode structures causes an oscillatory movement of the flexing arms in opposite directions along the first horizontal axis at a resonance frequency, and the other electrode structure has a function of detecting the oscillation. A suspension structure has a suspension arm in the window. An attachment arrangement is coupled to the suspension element centrally in the window, near the second electrode structure.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: December 10, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Gattere, Alessandro Tocchio, Carlo Valzasina
  • Patent number: 10488200
    Abstract: A MEMS device including a main die that may be coupled to a secondary die, which forms a frame, and at least one first mobile mass elastically coupled to the frame, the main die forming: a driving stage that drives the first mobile mass so that it oscillates, parallel to a first direction, with frequency-modulated displacements; and a processing stage, which generates an output signal indicating an angular velocity of the MEMS device as a function of displacements parallel to a second direction that are made by the first mobile mass, when driven by the driving stage, on account of a Coriolis force.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: November 26, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Alessandro Tocchio, Carlo Valzasina
  • Publication number: 20190336271
    Abstract: An implantable biodegradable medical device arranged for breast reconstruction and/or augmentation, made of an interconnected porous structured polymeric matrix and belonging to the family of poly(urea urethane)s. The porous structured polymeric matrix of the medical device comprises a plurality of three dimensional channels, drilled by means of heated tools, three-dimensionally propagating through the polymeric matrix ad interconnected with the porous structure of the polymeric matrix.
    Type: Application
    Filed: September 1, 2016
    Publication date: November 7, 2019
    Inventors: Irini GERGES, Federico MARTELLO, Margherita TAMPLENIZZA, Alessandro TOCCHIO
  • Patent number: 10400081
    Abstract: The present invention relates to a method of synthesis and the use of foamed, cross-linked polyurethane polymers, as a three-dimensional support called a “scaffold” for cell cultures in vitro and for in vivo implantation for the regeneration of connective tissues such as adipose tissue, osteochondral tissue and bone tissue. In particular, the invention relates to a method of preparing polymers or foamed polyurethane co polymers, having improved hydrophilia, which involves the use of two types of catalyst, one for the cross-linking reaction and one for the foaming reaction and the use of at least one polar aprotic high-boiling solvent.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: September 3, 2019
    Assignee: TENSIVE S.R.L.
    Inventors: Irini Gerges, Federico Martello, Margherita Tamplenizza, Alessandro Tocchio
  • Publication number: 20190195964
    Abstract: A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 27, 2019
    Inventors: Giacomo LAGHI, Giacomo LANGFELDER, Gabriele GATTERE, Alessandro TOCCHIO, Dario PACI
  • Patent number: 10329141
    Abstract: An encapsulated device of semiconductor material wherein a chip of semiconductor material is fixed to a base element of a packaging body through at least one pillar element having elasticity and deformability greater than the chip, for example a Young's modulus lower than 300 MPa. In one example, four pillar elements are fixed in proximity of the corners of a fixing surface of the chip and operate as uncoupling structure, which prevents transfer of stresses and deformations of the base element to the chip.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: June 25, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Tocchio, Carlo Valzasina, Luca Guerinoni, Giorgio Allegato
  • Publication number: 20190152769
    Abstract: An integrated semiconductor device includes: a MEMS structure; an ASIC electronic circuit; and conductive interconnection structures electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Inventors: Alessandro TOCCHIO, Lorenzo CORSO
  • Publication number: 20190131952
    Abstract: A MEMS resonator system has a micromechanical resonant structure and an electronic processing circuit including a first resonant loop that excites a first vibrational mode of the structure and generates a first signal at a first resonance frequency. A compensation module compensates, as a function of a measurement of temperature variation, a first variation of the first resonance frequency caused by the temperature variation to generate a clock signal at a desired frequency that is stable relative to temperature. The electronic processing circuit further includes a second resonant loop, which excites a second vibrational mode of the structure and generates a second signal at a second resonance frequency. A temperature-sensing module receives the first and second signals and generates the measurement of temperature variation as a function of the first variation of the first resonance frequency and a second variation of the second resonance frequency caused by the temperature variation.
    Type: Application
    Filed: October 26, 2018
    Publication date: May 2, 2019
    Inventors: Carlo Valzasina, Gabriele Gattere, Alessandro Tocchio, Giacomo Langfelder
  • Patent number: 10274512
    Abstract: A MEMS sensor device provided with a sensing structure, having: a substrate with a top surface extending in a horizontal plane; an inertial mass, suspended over the substrate; elastic coupling elements, elastically connected to the inertial mass so as to enable inertial movement thereof with respect to the substrate as a function of a quantity to be detected along a sensing axis belonging to the horizontal plane; and sensing electrodes, capacitively coupled to the inertial mass so as to form at least one sensing capacitor, a value of capacitance of which is indicative of the quantity to be detected. The sensing structure moreover has a suspension structure, to which the sensing electrodes are rigidly coupled, and to which the inertial mass is elastically coupled through the elastic coupling elements; the suspension structure is connected to an anchorage structure, fixed with respect to the substrate, by means of elastic suspension elements.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 30, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Tocchio, Francesco Rizzini, Luca Guerinoni
  • Patent number: 10267869
    Abstract: A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: April 23, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Giacomo Laghi, Giacomo Langfelder, Gabriele Gattere, Alessandro Tocchio, Dario Paci
  • Patent number: 10254355
    Abstract: A magnetic field sensor includes a die and a current generator in the die. The current generator generates a driving current. A Lorentz force transducer is also formed in the die and coupled to the current generator to obtain measurements of a magnetic field based upon the Lorentz force. The magnetic field has a resonance frequency and the current generator drives the Lorentz force sensor with the driving current having a non-zero frequency different from the resonance frequency.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: April 9, 2019
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giacomo Langfelder, Alessandro Tocchio, Dario Paci
  • Publication number: 20190064205
    Abstract: An inertial sensor for sensing an external acceleration includes: a first and a second proof mass; a first and a second capacitor formed between first and second fixed electrodes and the first proof mass; a third and a fourth capacitor formed between third and fourth fixed electrodes and the second proof mass; a driving assembly configured to cause an antiphase oscillation of the first and second proof masses; a biasing circuit configured to bias the first and third capacitors, thus generating first variation of the oscillation frequency in a first time interval, and to bias the second and fourth capacitors, thus generating first variation of the oscillation frequency in a second time interval; a sensing assembly, configured to generate an differential output signal which is a function of a difference between a value of the oscillating frequency during the first time interval and a value of the oscillating frequency during the second time interval.
    Type: Application
    Filed: August 29, 2018
    Publication date: February 28, 2019
    Inventors: Alessandro TOCCHIO, Francesco RIZZINI, Carlo VALZASINA, Giacomo LANGFELDER, Cristiano Rocco MARRA
  • Patent number: 10209269
    Abstract: Described herein is a microelectromechanical detection structure, provided with: a substrate having a top surface extending in a plane; a detection-electrode arrangement; an inertial mass, suspended above the substrate and the detection-electrode arrangement; and elastic elements, coupling the inertial mass to a central anchorage element fixed with respect to the substrate, in such a way that it is free to rotate about an axis of rotation as a function of a quantity to be detected along a vertical axis, the central anchorage element being arranged at the axis of rotation. A suspension structure is coupled to the detection-electrode arrangement for supporting it, suspended above the substrate and underneath the inertial mass, and is anchored to the substrate via at least one first anchorage region; the fixed-electrode arrangement is anchored to the suspension structure via at least one second anchorage region.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: February 19, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventor: Alessandro Tocchio
  • Patent number: 10202275
    Abstract: A process for manufacturing an integrated semiconductor device, envisages: forming a MEMS structure; forming an ASIC electronic circuit; and electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: February 12, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Tocchio, Lorenzo Corso
  • Publication number: 20180339898
    Abstract: A MEMS resonator is equipped with a substrate, a moving structure suspended above the substrate in a horizontal plane formed by first and second axes, having first and second arms, parallel to one another and extending along the second axis, coupled at their respective ends by first and second transverse joining elements, forming an internal window. A first electrode structure is positioned outside the window and capacitively coupled to the moving structure. A second electrode structure is positioned inside the window. One of the first and second electrode structures causes an oscillatory movement of the flexing arms in opposite directions along the first horizontal axis at a resonance frequency, and the other electrode structure has a function of detecting the oscillation. A suspension structure has a suspension arm in the window. An attachment arrangement is coupled to the suspension element centrally in the window, near the second electrode structure.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 29, 2018
    Inventors: Gabriele Gattere, Alessandro Tocchio, Carlo Valzasina
  • Publication number: 20180342998
    Abstract: A microelectromechanical device having a mobile structure including mobile arms formed from a composite material and having a fixed structure including fixed arms capacitively coupled to the mobile arms. The composite material includes core regions of insulating material and a silicon coating.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 29, 2018
    Inventors: Gabriele Gattere, Lorenzo Corso, Alessandro Tocchio, Carlo Valzasina
  • Patent number: 10113872
    Abstract: MEMS device having a support region elastically carrying a suspended mass through first elastic elements. A tuned dynamic absorber is elastically coupled to the suspended mass and configured to dampen quadrature forces acting on the suspended mass at the natural oscillation frequency of the dynamic absorber. The tuned dynamic absorber is formed by a damping mass coupled to the suspended mass through second elastic elements. In an embodiment, the suspended mass and the damping mass are formed in a same structural layer, for example of semiconductor material, and the damping mass is surrounded by the suspended mass.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 30, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luca Giuseppe Falorni, Carlo Valzasina, Roberto Carminati, Alessandro Tocchio
  • Publication number: 20180280977
    Abstract: Systems and methods for levitating populations of moieties, cells, or other such units using one or more magnets in a microfluidic environment are provided. These systems and methods may be used to, for example, separate or sort heterogeneous populations of the units from one another, to assembly a multi-unit assembly during the levitating of the units, and to evaluate samples at the point of care in real-time. These systems and methods may also utilize a frame that enables an imaging device, such as a smartphone, to capture the units in real time as they are manipulated in the system.
    Type: Application
    Filed: September 30, 2016
    Publication date: October 4, 2018
    Inventors: Murat Baday, Naside Gozde Durmus, Semih Calamak, Utkan Demirci, Ronald W. Davis, Lars Steinmetz, Jaeyoung Yang, Thiruppathiraja Chinnasamy, Alessandro Tocchio
  • Publication number: 20180250122
    Abstract: A multiple energy storage device fuel gauge is described for a device having a power system with multiple heterogeneous energy storage devices. The fuel gauge keeps track of a present state of multiple heterogeneous energy storage devices simultaneously. The fuel gauge implements collective measurement of voltage and current of the multiple heterogeneous energy storage devices via shared circuitry to determine status information, such as state of charge (SOC) and internal resistance values. A controller of the fuel gauge uses various measurements and energy storage device-specific parameters to compute status values indicative of the state of each energy storage device. The status values are maintained by the fuel gauge and exposed to other system components to facilitate power management decisions. A communication bus is used to communicate between the fuel gauge and System components, and a software API may be exposed to facilitate access to various energy storage device specific information.
    Type: Application
    Filed: September 1, 2016
    Publication date: September 6, 2018
    Applicant: TENSIVE SRL
    Inventors: Irini GERGES, Federico MARTELLO, Margherita TAMPLENIZZA, Alessandro TOCCHIO
  • Publication number: 20180188336
    Abstract: A MEMS triaxial magnetic sensor device includes a sensing structure having: a substrate; an outer frame, which internally defines a window and is elastically coupled to first anchorages fixed with respect to the substrate by first elastic elements; a mobile structure arranged in the window, suspended above the substrate, which is elastically coupled to the outer frame by second elastic elements and carries a conductive path for flow of an electric current; and an elastic arrangement operatively coupled to the mobile structure. The mobile structure performs, due to the first and second elastic elements and the arrangement of elastic elements, first, second, and third sensing movements in response to Lorentz forces from first, second, and third magnetic-field components, respectively. The first, second, and third sensing movements are distinct and decoupled from one another.
    Type: Application
    Filed: June 29, 2017
    Publication date: July 5, 2018
    Inventors: Giacomo Laghi, Giacomo Langfelder, Gabriele Gattere, Alessandro Tocchio, Dario Paci