Patents by Inventor Alessandro Tocchio

Alessandro Tocchio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835541
    Abstract: A MEMS accelerometric sensor includes a bearing structure and a suspended region that is made of semiconductor material, mobile with respect to the bearing structure. At least one modulation electrode is fixed to the bearing structure and is biased with an electrical modulation signal including at least one periodic component having a first frequency. At least one variable capacitor is formed by the suspended region and by the modulation electrode in such a way that the suspended region is subjected to an electrostatic force that depends upon the electrical modulation signal. A sensing assembly generates, when the accelerometric sensor is subjected to an acceleration, an electrical sensing signal indicating the position of the suspended region with respect to the bearing structure and includes a frequency-modulated component that is a function of the acceleration and of the first frequency.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: December 5, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Gabriele Gattere
  • Publication number: 20230314469
    Abstract: A MEMS tri-axial accelerometer is provided with a sensing structure having: a single inertial mass, with a main extension in a horizontal plane defined by a first horizontal axis and a second horizontal axis and internally defining a first window that traverses it throughout a thickness thereof along a vertical axis orthogonal to the horizontal plane; and a suspension structure, arranged within the window for elastically coupling the inertial mass to a single anchorage element, which is fixed with respect to a substrate and arranged within the window, so that the inertial mass is suspended above the substrate and is able to carry out, by the inertial effect, a first sensing movement, a second sensing movement, and a third sensing movement in respective sensing directions parallel to the first, second, and third horizontal axes following upon detection of a respective acceleration component.
    Type: Application
    Filed: April 27, 2023
    Publication date: October 5, 2023
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro TOCCHIO, Francesco RIZZINI
  • Publication number: 20230296643
    Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Jean Marie DARMANIN, Carlo VALZASINA, Alessandro TOCCHIO, Gabriele GATTERE
  • Publication number: 20230270918
    Abstract: An implantable and biodegradable polymeric matrix with reduced foreign body response for the regeneration and/or reconstruction and/or creation of soft and connective tissue and/or organs is provided. The matrix has a density equal to or lower than 40 kg/m3, a plurality of local thicknesses of a solid component with an arithmetic mean equal to or lower than 95 ?m, an average size of pores/void spaces equal to or lower than 15,000 ?m, a surface roughness Ra of the solid component with an arithmetic mean equal to or lower than 3 ?m; and a contact angle ? of the solid component lower than 110°, preferably in the range 10° to 90°, and more preferably in the range 30° to 60°.
    Type: Application
    Filed: October 6, 2020
    Publication date: August 31, 2023
    Inventors: Irini GERGES, Alessandro TOCCHIO, Federico MARTELLO, Margherita TAMPLENIZZA, Giulia Maria Foscarina CHINCARINI, Stefano KOMAN
  • Patent number: 11698388
    Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: July 11, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Jean Marie Darmanin, Carlo Valzasina, Alessandro Tocchio, Gabriele Gattere
  • Patent number: 11691870
    Abstract: An integrated semiconductor device includes: a MEMS structure; an ASIC electronic circuit; and conductive interconnection structures electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: July 4, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Lorenzo Corso
  • Publication number: 20230184806
    Abstract: An inertial structure is elastically coupled through a first elastic structure to a supporting structure so as to move along a sensing axis as a function of a quantity to be detected. The inertial structure includes first and second inertial masses which are elastically coupled together by a second elastic structure to enable movement of the second inertial mass along the sensing axis. The first elastic structure has a lower elastic constant than the second elastic structure so that, in presence of the quantity to be detected, the inertial structure moves in a sensing direction until the first inertial mass stops against a stop structure and the second elastic mass can move further in the sensing direction. Once the quantity to be detected ends, the second inertial mass moves in a direction opposite to the sensing direction and detaches the first inertial mass from the stop structure.
    Type: Application
    Filed: December 28, 2022
    Publication date: June 15, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Gabriele GATTERE, Francesco RIZZINI, Alessandro TOCCHIO
  • Patent number: 11667519
    Abstract: An integrated semiconductor device includes: a MEMS structure; an ASIC electronic circuit; and conductive interconnection structures electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: June 6, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Lorenzo Corso
  • Patent number: 11650221
    Abstract: A MEMS tri-axial accelerometer is provided with a sensing structure having: a single inertial mass, with a main extension in a horizontal plane defined by a first horizontal axis and a second horizontal axis and internally defining a first window that traverses it throughout a thickness thereof along a vertical axis orthogonal to the horizontal plane; and a suspension structure, arranged within the window for elastically coupling the inertial mass to a single anchorage element, which is fixed with respect to a substrate and arranged within the window, so that the inertial mass is suspended above the substrate and is able to carry out, by the inertial effect, a first sensing movement, a second sensing movement, and a third sensing movement in respective sensing directions parallel to the first, second, and third horizontal axes following upon detection of a respective acceleration component.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 16, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Francesco Rizzini
  • Patent number: 11603310
    Abstract: A MEMS device with teeter-totter structure includes a mobile mass having an area in a plane and a thickness in a direction perpendicular to the plane. The mobile mass is tiltable about a rotation axis extending parallel to the plane and formed by a first and by a second half-masses arranged on opposite sides of the rotation axis. The first and the second masses have a first and a second centroid, respectively, arranged at a first and a second distance b1, b2, respectively, from the rotation axis. First through openings are formed in the first half-mass and, together with the first half-mass, have a first total perimeter p1 in the plane. Second through openings are formed in the second half-mass and, together with the second half-mass, have a second total perimeter p2 in the plane, where the first and the second perimeters p1, p2 satisfy the equation: p1×b1=p2×b2.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: March 14, 2023
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Francesco Rizzini, Alessandro Tocchio
  • Patent number: 11543428
    Abstract: An inertial structure is elastically coupled through a first elastic structure to a supporting structure so as to move along a sensing axis as a function of a quantity to be detected. The inertial structure includes first and second inertial masses which are elastically coupled together by a second elastic structure to enable movement of the second inertial mass along the sensing axis. The first elastic structure has a lower elastic constant than the second elastic structure so that, in presence of the quantity to be detected, the inertial structure moves in a sensing direction until the first inertial mass stops against a stop structure and the second elastic mass can move further in the sensing direction. Once the quantity to be detected ends, the second inertial mass moves in a direction opposite to the sensing direction and detaches the first inertial mass from the stop structure.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 3, 2023
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Gabriele Gattere, Francesco Rizzini, Alessandro Tocchio
  • Publication number: 20220404150
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 22, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro TOCCHIO, Luca Giuseppe FALORNI, Claudia COMI, Valentina ZEGA
  • Publication number: 20220323960
    Abstract: A heterogeneous population of cells are separated and collected according to a method. The heterogeneous population of cells in a paramagnetic medium are placed in a fluidic channel in which the fluidic channel comprises two or more outlets. The heterogeneous population of cells in the fluidic channel are separated based on differences in magnetic susceptibility and density of the heterogeneous population of cells. Fluid comprising the separated cells is withdrawn from the two or more outlets using variable flow rates by fluidic pumps at respective ones of the two or more outlets simultaneously to fractionalize the fluid comprising the separated cells across the two or more outlets by manipulation of the variable flow rates relative to one another.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 13, 2022
    Inventors: Murat Baday, Naside Gozde Durmus, Semih Calamak, Utkan Demirci, Ronald W. Davis, Lars Steinmetz, Jaeyoung Yang, Thiruppathiraja Chinnasamy, Alessandro Tocchio
  • Patent number: 11448507
    Abstract: A frequency modulation MEMS triaxial gyroscope, having two mobile masses; a first and a second driving body coupled to the mobile masses through elastic elements rigid in a first direction and compliant in a second direction transverse to the first direction; and a third and a fourth driving body coupled to the mobile masses through elastic elements rigid in the second direction and compliant in the first direction. A first and a second driving element are coupled to the first and second driving bodies for causing the mobile masses to translate in the first direction in phase opposition. A third and a fourth driving element are coupled to the third and fourth driving bodies for causing the mobile masses to translate in the second direction and in phase opposition. An out-of-plane driving element is coupled to the first and second mobile masses for causing a translation in a third direction, in phase opposition.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: September 20, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Tocchio, Luca Giuseppe Falorni, Claudia Comi, Valentina Zega
  • Patent number: 11408904
    Abstract: The accelerometric sensor has a suspended region, mobile with respect to a supporting structure, and a sensing assembly coupled to the suspended region and configured to detect a movement of the suspended region with respect to the supporting structure. The suspended region has a geometry variable between at least two configurations associated with respective centroids, different from each other. The suspended region is formed by a first region rotatably anchored to the supporting structure and by a second region coupled to the first region through elastic connection elements configured to allow a relative movement of the second region with respect to the first region. A driving assembly is coupled to the second region so as to control the relative movement of the latter with respect to the first region.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 9, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Alessandro Tocchio, Francesco Rizzini, Carlo Valzasina, Giacomo Langfelder
  • Patent number: 11338290
    Abstract: Systems and methods for levitating populations of moieties, cells, or other such units using one or more magnets in a microfluidic environment are provided. These systems and methods may be used to, for example, separate or sort heterogeneous populations of the units from one another, to assembly a multi-unit assembly during the levitating of the units, and to evaluate samples at the point of care in real-time. These systems and methods may also utilize a frame that enables an imaging device, such as a smartphone, to capture the units in real time as they are manipulated in the system.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 24, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Murat Baday, Naside Gozde Durmus, Semih Calamak, Utkan Demirci, Ronald W. Davis, Lars Steinmetz, Jaeyoung Yang, Thiruppathiraja Chinnasamy, Alessandro Tocchio
  • Patent number: 11320452
    Abstract: A microelectromechanical system (MEMS) accelerometer sensor has a mobile mass and a sensing capacitor. To self-test the sensor, a test signal is applied to the sensing capacitor during a reset phase of a sensing circuit coupled to the sensing capacitor. The test signal is configured to cause an electrostatic force which produces a physical displacement of the mobile mass corresponding to a desired acceleration value. Then, during a read phase of the sensing circuit, a variation in capacitance of sensing capacitor due to the physical displacement of the mobile mass is sensed. This sensed variation in capacitance is converted to a sensed acceleration value. A comparison of the sensed acceleration value to the desired acceleration value provides an indication of an error in operation of the MEMS accelerometer sensor if the sensed acceleration value and desired acceleration value are not substantially equal.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: May 3, 2022
    Assignees: STMicroelectronics, Inc., STMicroelectronics S.r.l.
    Inventors: Yamu Hu, David McClure, Alessandro Tocchio, Naren K. Sahoo, Anthony Junior Casillan
  • Patent number: 11277112
    Abstract: A microelectromechanical device having a mobile structure including mobile arms formed from a composite material and having a fixed structure including fixed arms capacitively coupled to the mobile arms. The composite material includes core regions of insulating material and a silicon coating.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: March 15, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Gabriele Gattere, Lorenzo Corso, Alessandro Tocchio, Carlo Valzasina
  • Publication number: 20210190814
    Abstract: A micromechanical device includes a semiconductor body, a first mobile structure, an elastic assembly, coupled to the first mobile structure and to the semiconductor body and adapted to undergo deformation in a direction, and at least one abutment element. The elastic assembly is configured to enable an oscillation of the first mobile structure as a function of a force applied thereto. The first mobile structure, the abutment element and the elastic assembly are arranged with respect to one another in such a way that: when the force is lower than a force threshold, the elastic assembly operates with a first elastic constant; and when the force is greater than the threshold force, then the first mobile structure is in contact with the abutment element, and a deformation of the elastic assembly is generated, which operates with a second elastic constant different from the first elastic constant.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 24, 2021
    Inventors: Jean Marie DARMANIN, Carlo VALZASINA, Alessandro TOCCHIO, Gabriele GATTERE
  • Publication number: 20210155472
    Abstract: An integrated semiconductor device includes: a MEMS structure; an ASIC electronic circuit; and conductive interconnection structures electrically coupling the MEMS structure to the ASIC electronic circuit. The MEMS structure and the ASIC electronic circuit are integrated starting from a same substrate including semiconductor material; wherein the MEMS structure is formed at a first surface of the substrate, and the ASIC electronic circuit is formed at a second surface of the substrate, vertically opposite to the first surface in a direction transverse to a horizontal plane of extension of the first surface and of the second surface.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Inventors: Alessandro TOCCHIO, Lorenzo CORSO