Patents by Inventor Alex A. Waldrop, III

Alex A. Waldrop, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900931
    Abstract: A sample fluid (14) is pumped through a first cavity (38) associated with a first piezoelectric resonator (20.1) and pumped through a second cavity (40) associated with a second piezoelectric resonator (20.2). An electrode (26) of the first piezoelectric resonator (20.1) exposed to the sample fluid (14) in the first cavity (38) is coated with an adsorption layer (34.1) that provides for adsorbing a substance (12) to be detected in the sample fluid (14). The adsorbed substance (12) changes the resonant frequency of the first piezoelectric resonator (20.1) relative to that of the second piezoelectric resonator (20.2), wherein a change in the frequency difference therebetween relative to an initial frequency difference is responsive to and provides a measure of the mass of adsorbed substance (12). The adsorption layer (34.1) of the first piezoelectric resonator (20.1) is automatically refreshed when a change in the frequency difference crosses a threshold (?FEOR).
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 26, 2021
    Assignee: Quansor Corp
    Inventors: John H. Merrill, Alex A. Waldrop, III, Eric R. Becks
  • Publication number: 20180299410
    Abstract: A sample fluid (14) is pumped through a first cavity (38) associated with a first piezoelectric resonator (20.1) and pumped through a second cavity (40) associated with a second piezoelectric resonator (20.2). An electrode (26) of the first piezoelectric resonator (20.1) exposed to the sample fluid (14) in the first cavity (38) is coated with an adsorption layer (34.1) that provides for adsorbing a substance (12) to be detected in the sample fluid (14). The adsorbed substance (12) changes the resonant frequency of the first piezoelectric resonator (20.1) relative to that of the second piezoelectric resonator (20.2), wherein a change in the frequency difference therebetween relative to an initial frequency difference is responsive to and provides a measure of the mass of adsorbed substance (12). The adsorption layer (34.1) of the first piezoelectric resonator (20.1) is automatically refreshed when a change in the frequency difference crosses a threshold (?FEoR).
    Type: Application
    Filed: October 14, 2016
    Publication date: October 18, 2018
    Applicant: Quansor Corporation
    Inventors: John H. Merrill, Alex A. Waldrop, III, Eric R. Becks