Patents by Inventor Alex C. Toy

Alex C. Toy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9248299
    Abstract: In general, the disclosure is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience. The patient programmer includes an internal antenna mounted on a first circuit board and a display mounted on a second circuit board. The first circuit board includes a substantially contiguous ground plane layer that is interrupted by two or more gaps. The patient programmer may also include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, John W. Forsberg, Mark E. Schommer, David P. Olson, William C. Phillips, Charles R. Lewis, Jr.
  • Patent number: 9248298
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: February 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, Steve J. Nelson, John W. Forsberg, Mark E. Schommer, David P. Olson, William C. Phillips, Charles R. Lewis, Jr.
  • Patent number: 8509909
    Abstract: Telemetry signal strength is used for positioning a primary recharge coil of a recharging unit at a location proximate to an Implantable Medical Device (IMD) in preparation to recharge a rechargeable power source of the IMD. An antenna of the recharging unit is positioned proximate to the IMD, a telemetry session is initiated between the two devices, and a value indicative of the telemetry signal strength is obtained. Using a known correspondence between telemetry signal strength and recharge coupling efficiency for the IMD/recharging unit pair, the telemetry signal strength value is used to determine whether adequate recharge coupling may be achieved between the pair of devices. If so, a recharge session may be established. Otherwise, the antenna is repositioned and the process is repeated. The correspondence between telemetry signal strength and recharge coupling efficiency for the device pair may be developed empirically or using modeling.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: Medtronic, Inc.
    Inventors: Giselle Suraya Figueiredo, John W. Forsberg, Jeffrey T. Keacher, Alex C. Toy, Erik G. Widman
  • Patent number: 8442643
    Abstract: A programmer for a medical device, such as a neurostimulator, includes a reduced-noise power supply that converts dc power provided by a battery source to power for components within the programmer. The power supply includes a pulse-skipping dc-dc boost converter. The programmer provides an input circuit for selectively inhibiting pulse-skipping to reduce switching noise that could otherwise undermine wireless telemetry performance between the programmer and a medical device.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 14, 2013
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, John W. Forsberg
  • Patent number: 8265770
    Abstract: An external device, charge, system and method for an implantable medical device having therapeutic componentry, a secondary coil operatively coupled to the therapeutic componentry and an internal telemetry coil. A primary coil is capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. An external telemetry coil is capable of communicating with the internal telemetry coil. Driver circuitry is selectively operatively coupled to the primary coil and to the external telemetry coil. The driver circuitry is switchable between (1) driving the primary coil for inductively energizing the secondary coil and (2) driving the external telemetry coil for communicating with the internal telemetry coil.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, David P. Olson, John W. Forsberg
  • Publication number: 20100198307
    Abstract: In general, the disclosure is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience. The patient programmer includes an internal antenna mounted on a first circuit board and a display mounted on a second circuit board. The first circuit board includes a substantially contiguous ground plane layer that is interrupted by two or more gaps. The patient programmer may also include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: Medtronic, Inc.
    Inventors: Alex C. Toy, John W. Forsberg, Mark E. Schommer, David P. Olson, William C. Phillips, Charles R. Lewis, JR.
  • Patent number: 7729766
    Abstract: In general, the disclosure is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience. The patient programmer includes an internal antenna mounted on a first circuit board and a display mounted on a second circuit board. The first circuit board includes a substantially contiguous around plane layer that is interrupted by two or more gaps. The patient programmer may also include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 1, 2010
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, John W. Forsberg, Mark E. Schommer, David P. Olson, William C. Phillips, Charles R. Lewis, Jr.
  • Patent number: 7631415
    Abstract: A method for assembling a programmer for a medical device includes assembling a housing member, a first circuit board, a second circuit board, and a plate member in a stacked z-axis configuration.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 15, 2009
    Assignee: Medtronic, Inc.
    Inventors: William C. Phillips, John W. Forsberg, Mark E. Schommer, Alex C. Toy, David P. Olson, Charles R. Lewis, Jr.
  • Publication number: 20090259273
    Abstract: Techniques for using telemetry signal strength for positioning a primary recharge coil of a recharging unit at a location proximate to an Implantable Medical Device (IMD) in preparation to recharge a rechargeable power source of the IMD are disclosed. An antenna of the recharging unit is positioned proximate to the IMD, a telemetry session is initiated between the two devices, and a value indicative of the telemetry signal strength is obtained. Using a known correspondence between telemetry signal strength and recharge coupling efficiency for the IMD/recharging unit pair, the telemetry signal strength value is used to determine whether adequate recharge coupling may be achieved between the pair of devices. If so, a recharge session may be established. Otherwise, the antenna is repositioned and the process is repeated. The correspondence between telemetry signal strength and recharge coupling efficiency for the device pair may be developed empirically or using modeling.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Applicant: Medtronic, Inc.
    Inventors: Giselle Suraya Figueiredo, John W. Forsberg, Jeffrey T. Keacher, Alex C. Toy, Erik G. Widman
  • Patent number: 7561921
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience. For example, the patient programmer may include an internal antenna for RF telemetry with the implantable medical device. The internal antenna may have a loop-like structure that defines a central aperture. A battery bay may extend at least partially into the antenna aperture from the patient programmer housing. One or more batteries may be mounted in the battery bay within the antenna aperture. In some cases, the batteries may contribute favorably to the RF load presented to the internal antenna. In particular, the batteries may present an additional load to the internal antenna, enhancing immunity to electrical and electromagnetic interference during telemetry sessions with the implantable medical device.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: July 14, 2009
    Assignee: Medtronic, Inc.
    Inventors: William C. Phillips, Alex C. Toy, Charles R. Lewis, Jr., Mark E. Schommer, John W. Forsberg, David P. Olson
  • Publication number: 20080127478
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Application
    Filed: February 13, 2008
    Publication date: June 5, 2008
    Applicant: Medtronic, Inc.
    Inventors: William C. Phillips, John W. Forsberg, Mark E. Schommer, Alex C. Toy, David P. Olson, Charles R. Lewis,
  • Patent number: 7356369
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: April 8, 2008
    Assignee: Medtronic, Inc.
    Inventors: William C. Phillips, John W. Forsberg, Mark E. Schommer, Alex C. Toy, David P. Olson, Charles R. Lewis, Jr.
  • Patent number: 7272445
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: September 18, 2007
    Assignee: Medtronic, Inc.
    Inventors: William C. Phillips, Mark E. Schommer, John W. Forsberg, Alex C. Toy, David P. Olson
  • Patent number: 7263406
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience. For example, a patient programmer may include both an internal antenna for RF telemetry with an implantable medical device and a display. The patient programmer may include a processor or other control circuitry that selectively disables. i.e., turns off, the display during RF telemetry with the internal antenna to promote more reliable communication. The processor or control circuitry also may disable electronics associated with the display during a telemetry session. In this manner, the programmer can be configured to reduce the impact of electrical and electromagnetic noise on telemetry performance.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: August 28, 2007
    Assignee: Medtronic, Inc.
    Inventors: Alex C. Toy, Steve J. Nelson, John W. Forsberg, Mark E. Schommer, David P. Olson, William C. Phillips, Charles R. Lewis, Jr.
  • Patent number: 7203549
    Abstract: In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: April 10, 2007
    Assignee: Medtronic, Inc.
    Inventors: Mark E. Schommer, John W. Forsberg, Alex C. Toy, David P. Olson, William C. Phillips, Steve J. Nelson, Charles R. Lewis, Jr.
  • Patent number: 6512367
    Abstract: This invention presents a method and system for testing a disc drive head usable with a disc drive head testing device. The steps for this include determining an unknown electrical property of the head testing device. This is done by generating output signals at the output stage. The testing device property is then computed by solving for the unknown electrical property based on the output signals generated for each of the known test devices. For each disc drive head under test, the head is coupled to the input lead and exposed to a stored magnetic data pattern to generate a read signal at the input lead. The measured difference affects the generated read output signal. The read output signal is adjusted based on the testing device property and the measured property to compensate for differences in the measured property.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 28, 2003
    Assignee: Seagate Technology LLC
    Inventors: Hua Liu, Timothy A. Madsen, Alex C. Toy, Lezlie A. Hughes
  • Publication number: 20020041183
    Abstract: This invention presents a method and system for testing a disc drive head usable with a disc drive head testing device. The steps for this include determining an unknown electrical property of the head testing device. This is done by generating output signals at the output stage. The testing device property is then computed by solving for the unknown electrical property based on the output signals generated for each of the known test devices. For each disc drive head under test, the head is coupled to the input lead and exposed to a stored magnetic data pattern to generate a read signal at the input lead. The measured difference affects the generated read output signal. The read output signal is adjusted based on the testing device property and the measured property to compensate for differences in the measured property.
    Type: Application
    Filed: February 2, 2001
    Publication date: April 11, 2002
    Inventors: Hua Liu, Timothy A. Madsen, Alex C. Toy, Lezlie A. Hughes