Patents by Inventor Alex Charles Filipkowski

Alex Charles Filipkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11853348
    Abstract: Multidimensional digital content search techniques are described that support an ability of a computing device to perform search with increased granularity and flexibility over conventional techniques. In one example, a control is implemented by a computing device that defines a multidimensional (e.g., two-dimensional) continuous space. Locations in the multidimensional continuous space are usable to different search criteria through different weights applied to the criteria associated with the axes. Therefore, user interaction with this control may be used to define a location and corresponding coordinates that may act as weights to the search criteria in order to perform a search of digital content through use of a single user input.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 26, 2023
    Assignee: Adobe Inc.
    Inventors: Akhilesh Kumar, Zhe Lin, Ratheesh Kalarot, Jinrong Xie, Jianming Zhang, Baldo Antonio Faieta, Alex Charles Filipkowski
  • Publication number: 20230360299
    Abstract: Face anonymization techniques are described that overcome conventional challenges to generate an anonymized face. In one example, a digital object editing system is configured to generate an anonymized face based on a target face and a reference face. As part of this, the digital object editing system employs an encoder as part of machine learning to extract a target encoding of the target face image and a reference encoding of the reference face. The digital object editing system then generates a mixed encoding from the target and reference encodings. The mixed encoding is employed by a machine-learning model of the digital object editing system to generate a mixed face. An object replacement module is used by the digital object editing system to replace the target face in the target digital image with the mixed face.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 9, 2023
    Applicant: Adobe Inc.
    Inventors: Yang Yang, Zhixin Shu, Shabnam Ghadar, Jingwan Lu, Jakub Fiser, Elya Schechtman, Cameron Y. Smith, Baldo Antonio Faieta, Alex Charles Filipkowski
  • Patent number: 11748928
    Abstract: Face anonymization techniques are described that overcome conventional challenges to generate an anonymized face. In one example, a digital object editing system is configured to generate an anonymized face based on a target face and a reference face. As part of this, the digital object editing system employs an encoder as part of machine learning to extract a target encoding of the target face image and a reference encoding of the reference face. The digital object editing system then generates a mixed encoding from the target and reference encodings. The mixed encoding is employed by a machine-learning model of the digital object editing system to generate a mixed face. An object replacement module is used by the digital object editing system to replace the target face in the target digital image with the mixed face.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: September 5, 2023
    Assignee: Adobe Inc.
    Inventors: Yang Yang, Zhixin Shu, Shabnam Ghadar, Jingwan Lu, Jakub Fiser, Elya Schechtman, Cameron Y. Smith, Baldo Antonio Faieta, Alex Charles Filipkowski
  • Publication number: 20220148243
    Abstract: Face anonymization techniques are described that overcome conventional challenges to generate an anonymized face. In one example, a digital object editing system is configured to generate an anonymized face based on a target face and a reference face. As part of this, the digital object editing system employs an encoder as part of machine learning to extract a target encoding of the target face image and a reference encoding of the reference face. The digital object editing system then generates a mixed encoding from the target and reference encodings. The mixed encoding is employed by a machine-learning model of the digital object editing system to generate a mixed face. An object replacement module is used by the digital object editing system to replace the target face in the target digital image with the mixed face.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 12, 2022
    Applicant: Adobe Inc.
    Inventors: Yang Yang, Zhixin Shu, Shabnam Ghadar, Jingwan Lu, Jakub Fiser, Elya Schechtman, Cameron Y. Smith, Baldo Antonio Faieta, Alex Charles Filipkowski
  • Publication number: 20210406302
    Abstract: Multidimensional digital content search techniques are described that support an ability of a computing device to perform search with increased granularity and flexibility over conventional techniques. In one example, a control is implemented by a computing device that defines a multidimensional (e.g., two-dimensional) continuous space. Locations in the multidimensional continuous space are usable to different search criteria through different weights applied to the criteria associated with the axes. Therefore, user interaction with this control may be used to define a location and corresponding coordinates that may act as weights to the search criteria in order to perform a search of digital content through use of a single user input.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 30, 2021
    Applicant: Adobe Inc.
    Inventors: Akhilesh Kumar, Zhe Lin, Ratheesh Kalarot, Jinrong Xie, Jianming Zhang, Baldo Antonio Faieta, Alex Charles Filipkowski