Patents by Inventor Alex Chuang

Alex Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170229829
    Abstract: Laser and inspection systems that generate laser output light at sub-200 nm wavelengths using fundamental light at approximately 1064 nm. A second harmonic generator module generates second harmonic light directed to both an optical parametric (OP) module, which generates down-converted signal (idler light), and to a fifth harmonic generator module, which generates fifth harmonic light. The OP module includes an optical parametric oscillator that is configured to generate the idler signal at approximately 0.5 times the fundamental frequency. The idler light and fifth harmonic light are then mixed by a frequency mixing module to generate the laser output light having an output frequency equal to approximately 5.5 times the fundamental frequency.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Vladimir Dribinski, John Fielden
  • Patent number: 9620341
    Abstract: A system for inspecting a sample including a detector, either a photomultiplier tube or an electron-bombarded image sensor, that is positioned to receive light from the sample. The detector includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. The semiconductor photocathode includes silicon, and further includes a pure boron coating on at least one surface.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: April 11, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, David L. Brown, John Fielden
  • Patent number: 9620547
    Abstract: A high sensitivity image sensor comprises an epitaxial layer of silicon that is intrinsic or lightly p doped (such as a doping level less than about 1013 cm?3). CMOS or CCD circuits are fabricated on the front-side of the epitaxial layer. Epitaxial p and n type layers are grown on the backside of the epitaxial layer. A pure boron layer is deposited on the n-type epitaxial layer. Some boron is driven a few nm into the n-type epitaxial layer from the backside during the boron deposition process. An anti-reflection coating may be applied to the pure boron layer. During operation of the sensor a negative bias voltage of several tens to a few hundred volts is applied to the boron layer to accelerate photo-electrons away from the backside surface and create additional electrons by an avalanche effect. Grounded p-wells protect active circuits as needed from the reversed biased epitaxial layer.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: April 11, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Jingjing Zhang, John Fielden
  • Patent number: 9601299
    Abstract: A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects, and a low work-function material layer is then formed over the boron layer to enhance the emission of photoelectrons. The low work-function material includes an alkali metal (e.g., cesium) or an alkali metal oxide. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel sensors and inspection systems.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 21, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, John Fielden
  • Publication number: 20170069455
    Abstract: A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel electron-bombarded charge-coupled device (EBCCD) sensors and inspection systems.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: YUNG-HO ALEX CHUANG, JOHN FIELDEN
  • Publication number: 20170047207
    Abstract: An electron source is formed on a silicon substrate having opposing first and second surfaces. At least one field emitter is prepared on the second surface of the silicon substrate to enhance the emission of electrons. To prevent oxidation of the silicon, a thin, contiguous boron layer is disposed directly on the output surface of the field emitter using a process that minimizes oxidation and defects. The field emitter can take various shapes such as pyramids and rounded whiskers. One or several optional gate layers may be placed at or slightly lower than the height of the field emitter tip in order to achieve fast and accurate control of the emission current and high emission currents. The field emitter can be p-type doped and configured to operate in a reverse bias mode or the field emitter can be n-type doped.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 16, 2017
    Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Xuefeng Liu, John Fielden
  • Publication number: 20170048467
    Abstract: An inspection system and methods in which analog image data values (charges) captured by an image sensor are binned (combined) before or while being transmitted as output signals on the image sensor's output sensing nodes (floating diffusions), and in which an ADC is controlled to sequentially generate multiple corresponding digital image data values between each reset of the output sensing nodes. According to an output binning method, the image sensor is driven to sequentially transfer multiple charges onto the output sensing nodes between each reset, and the ADC is controlled to convert the incrementally increasing output signal after each charge is transferred onto the output sensing node. According to a multi-sampling method, multiple charges are vertically or horizontally binned (summed/combined) before being transferred onto the output sensing node, and the ADC samples each corresponding output signal multiple times. The output binning and multi-sampling methods may be combined.
    Type: Application
    Filed: July 14, 2016
    Publication date: February 16, 2017
    Inventors: Yung-Ho Alex Chuang, David L. Brown, Devis Contarato, John Fielden, Daniel I. Kavaldjiev, Guoheng Zhao, Jehn-Huar Chern, Guowu Zheng, Donald W. Pettibone, Stephen Biellak
  • Patent number: 9525265
    Abstract: A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: December 20, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng, John Fielden
  • Publication number: 20160365693
    Abstract: Improved inspection systems utilize laser systems and associated techniques to generate an ultra-violet (UV) wavelength of approximately 193.368 nm from a fundamental vacuum wavelength near 1063.5 nm. Preferred embodiments separate out an unconsumed portion of an input wavelength to at least one stage and redirect that unconsumed portion for use in another stage. The improved laser systems and associated techniques result in less expensive, longer life lasers than those currently being used in the industry. These laser systems can be constructed with readily-available, relatively inexpensive components.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: Yung-Ho Alex Chuang, J. Joseph Armstrong, Vladimir Dribinski, John Fielden
  • Publication number: 20160359292
    Abstract: A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, Justin Dianhuan Liou, J. Joseph Armstrong, Yujun Deng, John Fielden
  • Publication number: 20160343532
    Abstract: A photocathode utilizes an field emitter array (FEA) integrally formed on a silicon substrate to enhance photoelectron emissions, and a thin boron layer disposed directly on the output surface of the FEA to prevent oxidation. The field emitters are formed by protrusions having various shapes (e.g., pyramids or rounded whiskers) disposed in a two-dimensional periodic pattern, and may be configured to operate in a reverse bias mode. An optional gate layer is provided to control emission currents. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer. An optional external potential is generated between the opposing illuminated and output surfaces. An optional combination of n-type silicon field emitter and p-i-n photodiode film is formed by a special doping scheme and by applying an external potential. The photocathode forms part of sensor and inspection systems.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: Yung-Ho Alex Chuang, John Fielden, Yinying Xiao-Li, Xuefeng Liu
  • Publication number: 20160334342
    Abstract: Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region.
    Type: Application
    Filed: May 12, 2016
    Publication date: November 17, 2016
    Inventors: Yung-Ho Alex Chuang, John Fielden, David L. Brown, Jingjing Zhang, Keith Lyon, Mark Shi Wang
  • Patent number: 9494531
    Abstract: Methods and systems for minimizing interference among multiple illumination beams generated from a non-uniform illumination source to provide an effectively uniform illumination profile over the field of view of an inspection system are presented. In some examples, a pulsed beam of light is split into multiple illumination beams such that each of the beams are temporally separated at the surface of the specimen under inspection. In some examples, multiple illumination beams generated from a non-uniform illumination source are projected onto spatially separated areas on the surface of the specimen. A point object of interest illuminated by each area is imaged onto the surface of a time-delay integration (TDI) detector. The images are integrated such that the relative position of the illumination areas along the direction of motion of the point object of interest has no impact on the illumination efficiency distribution over the field of view.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: November 15, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Xiaoxu Lu, John Fielden, Ivan Maleev
  • Patent number: 9496425
    Abstract: An image sensor for short-wavelength light and charged particles includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. The image sensor can be included in an electron-bombarded image sensor and/or in an inspection system.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: November 15, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Jehn-Huar Chern, Ali R. Ehsani, Gildardo Delgado, David L. Brown, Yung-Ho Alex Chuang, John Fielden
  • Publication number: 20160315114
    Abstract: A high sensitivity image sensor comprises an epitaxial layer of silicon that is intrinsic or lightly p doped (such as a doping level less than about 1013 cm?3). CMOS or CCD circuits are fabricated on the front-side of the epitaxial layer. Epitaxial p and n type layers are grown on the backside of the epitaxial layer. A pure boron layer is deposited on the n-type epitaxial layer. Some boron is driven a few nm into the n-type epitaxial layer from the backside during the boron deposition process. An anti-reflection coating may be applied to the pure boron layer. During operation of the sensor a negative bias voltage of several tens to a few hundred volts is applied to the boron layer to accelerate photo-electrons away from the backside surface and create additional electrons by an avalanche effect. Grounded p-wells protect active circuits as needed from the reversed biased epitaxial layer.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Inventors: Yung-Ho Alex Chuang, Jingjing Zhang, John Fielden
  • Publication number: 20160300701
    Abstract: A system for inspecting a sample including a detector, either a photomultiplier tube or an electron-bombarded image sensor, that is positioned to receive light from the sample. The detector includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. The semiconductor photocathode includes silicon, and further includes a pure boron coating on at least one surface.
    Type: Application
    Filed: June 22, 2016
    Publication date: October 13, 2016
    Inventors: Yung-Ho Alex Chuang, David L. Brown, John Fielden
  • Publication number: 20160290932
    Abstract: An inspection system including an optical system (optics) to direct light from an illumination source to a sample, and to direct light reflected/scattered from the sample to one or more image sensors. At least one image sensor of the system is formed on a semiconductor membrane including an epitaxial layer having opposing surfaces, with circuit elements formed on one surface of the epitaxial layer, and a pure boron layer on the other surface of the epitaxial layer. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. The image sensor can be included in an electron-bombarded image sensor and/or in an inspection system.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Jehn-Huar Chern, Ali R. Ehsani, Gildardo Delgado, David L. Brown, Yung-Ho Alex Chuang, John Fielden
  • Patent number: 9461435
    Abstract: Laser-induced damage in an optical material can be mitigated by creating conditions at which light absorption is minimized. Specifically, electrons populating defect energy levels of a band gap in an optical material can be promoted to the conduction band—a process commonly referred to as bleaching. Such bleaching can be accomplished using a predetermined wavelength that ensures minimum energy deposition into the material, ideally promoting electron to just inside the conduction band. In some cases phonon (i.e. thermal) excitation can also be used to achieve higher depopulation rates. In one embodiment, a bleaching light beam having a wavelength longer than that of the laser beam can be combined with the laser beam to depopulate the defect energy levels in the band gap. The bleaching light beam can be propagated in the same direction or intersect the laser beam.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: October 4, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Vladimir Dribinski, Yung-Ho Alex Chuang
  • Patent number: 9448184
    Abstract: Determination of one or more optical characteristics of a structure of a semiconductor wafer includes measuring one or more optical signals from one or more structures of a sample, determining a background optical field associated with a reference structure having a selected set of nominal characteristics based on the one or more structures, determining a correction optical field suitable for at least partially correcting the background field, wherein a difference between the measured one or more optical signals and a signal associated with a sum of the correction optical field and the background optical field is below a selected tolerance level, and extracting one or more characteristics associated with the one or more structures utilizing the correction optical field.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: September 20, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Xuefeng Liu, Yung-Ho Alex Chuang, John Fielden
  • Patent number: 9419407
    Abstract: A pulsed UV laser assembly includes a partial reflector or beam splitter that divides each fundamental pulse into two sub-pulses and directs one sub-pulse to one end of a Bragg grating and the other pulse to the other end of the Bragg grating (or another Bragg grating) such that both sub-pulses are stretched and receive opposing (positive and negative) frequency chirps. The two stretched sub-pulses are combined to generate sum frequency light having a narrower bandwidth than could be obtained by second-harmonic generation directly from the fundamental. UV wavelengths may be generated directly from the sum frequency light or from a harmonic conversion scheme incorporating the sum frequency light. The UV laser may further incorporate other bandwidth reducing schemes. The pulsed UV laser may be used in an inspection or metrology system.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: August 16, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Yujun Deng, J. Joseph Armstrong, Yung-Ho Alex Chuang, Vladimir Dribinski, John Fielden