Patents by Inventor Alex David HEMSATH
Alex David HEMSATH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240275805Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: ApplicationFiled: April 22, 2024Publication date: August 15, 2024Applicant: Intellective Ai, Inc.Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
-
Patent number: 11991194Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: GrantFiled: July 6, 2021Date of Patent: May 21, 2024Assignee: Intellective Ai, Inc.Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
-
Publication number: 20220006825Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: ApplicationFiled: July 6, 2021Publication date: January 6, 2022Applicant: Intellective Ai, Inc.Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
-
Publication number: 20190230108Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: ApplicationFiled: December 11, 2018Publication date: July 25, 2019Applicant: Omni AI, Inc.Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
-
Patent number: 10187415Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: GrantFiled: March 26, 2017Date of Patent: January 22, 2019Assignee: Omni AI, Inc.Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
-
Publication number: 20180046613Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: ApplicationFiled: March 26, 2017Publication date: February 15, 2018Applicant: Omni AI, Inc.Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN
-
Patent number: 9639521Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: GrantFiled: August 11, 2014Date of Patent: May 2, 2017Assignee: Omni AI, Inc.Inventors: Ming-Jung Seow, Wesley Kenneth Cobb, Gang Xu, Tao Yang, Aaron Poffenberger, Lon W. Risinger, Kishor Adinath Saitwal, Michael S. Yantosca, David M. Solum, Alex David Hemsath, Dennis G. Urech, Duy Trong Nguyen, Charles Richard Morgan
-
Publication number: 20150046155Abstract: Embodiments presented herein describe techniques for generating a linguistic model of input data obtained from a data source (e.g., a video camera). According to one embodiment of the present disclosure, a sequence of symbols is generated based on an ordered stream of normalized vectors generated from the input data. A dictionary of words is generated from combinations of the ordered sequence of symbols based on a frequency at which combinations of symbols appear in the ordered sequence of symbols. A plurality of phrases is generated based an ordered sequence of words from the dictionary observed in the ordered sequence of symbols based on a frequency by which combinations of words in ordered sequence of words appear relative to one another.Type: ApplicationFiled: August 11, 2014Publication date: February 12, 2015Inventors: Ming-Jung SEOW, Wesley Kenneth COBB, Gang XU, Tao YANG, Aaron POFFENBERGER, Lon W. RISINGER, Kishor Adinath SAITWAL, Michael S. YANTOSCA, David M. SOLUM, Alex David HEMSATH, Dennis G. URECH, Duy Trong NGUYEN, Charles Richard MORGAN