Patents by Inventor Alex James HAMADE

Alex James HAMADE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872689
    Abstract: One aspect is an apparatus including an additively manufactured component including a surface with an end effector feature, the end effector feature co-additively manufactured with the additively manufactured component and configured to be gripped by a corresponding end effector on a robot. In an aspect, the end effector feature includes a recess in the surface. In another aspect, the recess includes an angled face. In an aspect, the recess has a teardrop shape. An aspect further includes an identification feature. In an aspect, the end effector feature includes a plurality of recesses in the surface. In another aspect, the end effector feature enables a 3-point kinematic self-aligning positive control lock.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 16, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Oussama Rawas, Roy Smith, Alex James Hamade, Muhammad Faizan Zafar, Keith Allen Fleming, Eahab Nagi El Naga, Antonio Bernerd Martinez, Chukwubuikem Marcel Okoli
  • Publication number: 20230235472
    Abstract: The instant disclosure describes example techniques for bonding multiple metal structures prior or subsequent to application of a protective coating (e.g., an electrocoating or e-coating) to the structures. In certain aspects, the structures may include one or more attachment points for attaching a single structure or multiple structures bonded together to a clamp or other suitable means for applying an electrical current to the structure(s).
    Type: Application
    Filed: January 24, 2023
    Publication date: July 27, 2023
    Inventors: Finley Hugh MARBURY, Michael Thomas Kenworthy, Alex James Hamade
  • Publication number: 20220339875
    Abstract: Techniques for flexible, on-site additive manufacturing of components or portions thereof for transport structures are disclosed. An automated assembly system for a transport structure may include a plurality of automated constructors to assemble the transport structure. In one aspect, the assembly system may span the full vertically integrated production process, from powder production to recycling. At least some of the automated constructors are able to move in an automated fashion between the station under the guidance of a control system. A first of the automated constructors may include a 3-D printer to print at least a portion of a component and to transfer the component to a second one of the automated constructors for installation during the assembly of the transport structure. The automated constructors may also be adapted to perform a variety of different tasks utilizing sensors for enabling machine-learning.
    Type: Application
    Filed: May 13, 2022
    Publication date: October 27, 2022
    Inventors: Kevin Robert CZINGER, Broc William TenHouten, David Charles O'Connell, Jon Paul Gunner, John Russell Bucknell, Alex James Hamade, David Brian TenHouten
  • Patent number: 11433557
    Abstract: A buffer block apparatus for securing a node may be described. The buffer block apparatus may include a first surface having disposed thereon at least one first zero-point feature configured for a first zero-point interface with a robotic assembly apparatus; and a second surface, different from the first surface, configured to connect with a first surface of a node and form a first rigid connection between the buffer block apparatus and the node, wherein the buffer block apparatus provides at least one reference coordinate system with respect to the node.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: September 6, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Eahab Nagi El Naga, Keith Allen Fleming, Matthew Cooper Keller, Lukas Philip Czinger, Chukwubuikem Marcel Okoli, Michael Thomas Kenworthy, Matthew Coleman Tindall, Justin David Almeleh, Matthew Michael O'Brien, Broc William TenHouten, Oussama Rawas, Juan Cuauhtemoc Munoz, Muhammad Faizan Zafar, Jamison Van Bruch, Thomas Samuel Bowden, Jr., Alex James Hamade
  • Patent number: 11358337
    Abstract: Techniques for flexible, on-site additive manufacturing of components or portions thereof for transport structures are disclosed. An automated assembly system for a transport structure may include a plurality of automated constructors to assemble the transport structure. In one aspect, the assembly system may span the full vertically integrated production process, from powder production to recycling. At least some of the automated constructors are able to move in an automated fashion between the station under the guidance of a control system. A first of the automated constructors may include a 3-D printer to print at least a portion of a component and to transfer the component to a second one of the automated constructors for installation during the assembly of the transport structure. The automated constructors may also be adapted to perform a variety of different tasks utilizing sensors for enabling machine-learning.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 14, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, David Charles O'Connell, Jon Paul Gunner, John Russell Bucknell, Alex James Hamade, David Brian TenHouten
  • Publication number: 20220097185
    Abstract: An apparatus for assembling structures is provided. The apparatus includes an assembly robot and a mobile unit coupled to or integrated with the assembly robot. A controller coupled to the assembly robot and the mobile unit can selectively operate the assembly robot and the mobile unit based at least in part on an assembly being produced, such that the controller selectively operates the mobile unit when at least one of the assembly being produced and a sequence of assembly of is altered.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 31, 2022
    Inventors: Lukas Philip CZINGER, Alex James HAMADE
  • Publication number: 20220066426
    Abstract: Adaptable manufacturing systems, methods, and apparatuses are disclosed. An apparatus for manufacturing a product in accordance with the present disclosure may include a design apparatus, an assembly apparatus, and a control apparatus, coupled to the design apparatus and the assembly apparatus. The control apparatus receives input information from the design apparatus and the assembly apparatus. The control apparatus provides output information for altering at least one parameter used by at least one of the design apparatus and the assembly apparatus in the manufacture of the product.
    Type: Application
    Filed: June 9, 2021
    Publication date: March 3, 2022
    Inventors: Kevin Robert CZINGER, Michael Thomas KENWORTHY, Lukas Philip CZINGER, Jinbo CHEN, Antonio Bernerd MARTINEZ, Matthew Cooper KELLER, Alex James HAMADE
  • Patent number: 11254381
    Abstract: Manufacturing cell based vehicle manufacturing systems and methods for a wide variety of vehicles are disclosed. In one aspect, a manufacturing cell configured for assembling a frame of a vehicle is disclosed. The manufacturing cell includes a positioner, a robot carrier and a robot. The positioner is configured to receive a fixture table configured to hold the frame. The robot carrier includes a vertical lift. The robot is configured to assemble the frame. The positioner is configured to support the frame in a vertical position during an assembling process. In another aspect of the disclosure, a system for manufacturing a vehicle based on a manufacturing cell is disclosed. In another aspect of the disclosure, a method for manufacturing a vehicle based on a manufacturing cell is disclosed.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: February 22, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Oussama Rawas, Alex James Hamade
  • Patent number: 10994876
    Abstract: An automated wrapping technique for vehicle components is disclosed. A component to be wrapped is secured to a fixture, which in turn is coupled to an actuator. A grabber arm grabs a length of wrap from a feed roll. The grabber arm removes the backing and spreads the wrap over the component. The actuator pushes the component upward until the wrap contacts the component surface. An applicator may concurrently smooth the wrap and evacuate trapped air. The wrap may be cut around the periphery of the component, and hemmed. A controller provides instructions to automate the wrapping mechanism.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: May 4, 2021
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Jon Paul Gunner, Alex James Hamade, Narender Shankar Lakshman, Stuart Paul Macey
  • Publication number: 20200070365
    Abstract: A buffer block apparatus for securing a node may be described. The buffer block apparatus may include a first surface having disposed thereon at least one first zero-point feature configured for a first zero-point interface with a robotic assembly apparatus; and a second surface, different from the first surface, configured to connect with a first surface of a node and form a first rigid connection between the buffer block apparatus and the node, wherein the buffer block apparatus provides at least one reference coordinate system with respect to the node.
    Type: Application
    Filed: August 27, 2019
    Publication date: March 5, 2020
    Inventors: Eahab Nagi El Naga, Keith Allen Fleming, Matthew Cooper Keller, Lukas Philip Czinger, Chukwubuikem Marcel Okoli, Michael Thomas Kenworthy, Matthew Coleman Tindall, Justin David Almeleh, Matthew Michael O'Brien, Broc William TenHouten, Oussama Rawas, Juan Cuauhtemoc Munoz, Muhammad Faizan Zafar, Jamison Van Bruch, Thomas Samuel Bowden, JR., Alex James Hamade
  • Publication number: 20190283824
    Abstract: Manufacturing cell based vehicle manufacturing systems and methods for a wide variety of vehicles are disclosed. In one aspect, a manufacturing cell configured for assembling a frame of a vehicle is disclosed. The manufacturing cell includes a positioner, a robot carrier and a robot. The positioner is configured to receive a fixture table configured to hold the frame. The robot carrier includes a vertical lift. The robot is configured to assemble the frame. The positioner is configured to support the frame in a vertical position during an assembling process. In another aspect of the disclosure, a system for manufacturing a vehicle based on a manufacturing cell is disclosed. In another aspect of the disclosure, a method for manufacturing a vehicle based on a manufacturing cell is disclosed.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: Oussama Rawas, Alex James Hamade
  • Publication number: 20190283260
    Abstract: One aspect is an apparatus including an additively manufactured component including a surface with an end effector feature, the end effector feature co-additively manufactured with the additively manufactured component and configured to be gripped by a corresponding end effector on a robot. In an aspect, the end effector feature includes a recess in the surface. In another aspect, the recess includes an angled face. In an aspect, the recess has a teardrop shape. An aspect further includes an identification feature. In an aspect, the end effector feature includes a plurality of recesses in the surface. In another aspect, the end effector feature enables a 3-point kinematic self-aligning positive control lock.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: Oussama Rawas, Roy Smith, Alex James Hamade, Muhammad Faizan Zafar, Keith Allen Fleming, Eahab Nagi El Naga, Antonio Bernerd Martinez, Chukwubuikem Marcel Okoli
  • Publication number: 20190002143
    Abstract: An automated wrapping technique for vehicle components is disclosed. A component to be wrapped is secured to a fixture, which in turn is coupled to an actuator. A grabber arm grabs a length of wrap from a feed roll. The grabber arm removes the backing and spreads the wrap over the component. The actuator pushes the component upward until the wrap contacts the component surface. An applicator may concurrently smooth the wrap and evacuate trapped air. The wrap may be cut around the periphery of the component, and hemmed. A controller provides instructions to automate the wrapping mechanism.
    Type: Application
    Filed: June 18, 2018
    Publication date: January 3, 2019
    Inventors: Jon Paul GUNNER, Alex James Hamade, Narender Shankar Lakshman, Stuart Paul Macey
  • Publication number: 20180339456
    Abstract: Techniques for flexible, on-site additive manufacturing of components or portions thereof for transport structures are disclosed. An automated assembly system for a transport structure may include a plurality of automated constructors to assemble the transport structure. In one aspect, the assembly system may span the full vertically integrated production process, from powder production to recycling. At least some of the automated constructors are able to move in an automated fashion between the station under the guidance of a control system. A first of the automated constructors may include a 3-D printer to print at least a portion of a component and to transfer the component to a second one of the automated constructors for installation during the assembly of the transport structure. The automated constructors may also be adapted to perform a variety of different tasks utilizing sensors for enabling machine-learning.
    Type: Application
    Filed: May 24, 2017
    Publication date: November 29, 2018
    Inventors: Kevin Robert CZINGER, Broc William TenHOUTEN, David Charles O'CONNELL, Jon Paul GUNNER, John Russell BUCKNELL, Alex James HAMADE, David Brian TenHOUTEN