Patents by Inventor Alex Ovtchinnikov

Alex Ovtchinnikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10615570
    Abstract: The inventive laser is configured with a plurality of pigtailed multimode (MM) diode lasers each receiving a direct input current at a room temperature which is maintained to be within a 20-25° C. inside the housing of the laser. The diode lasers each are configured to operate at a desired wavelength in an optimal operational range, in which the diode laser operates with a WPE range between 63% and 75%. The direct current inputted in each diode laser is selected to be below a threshold at an efficiency curve of the diode laser after which the efficiency of the diode laser starts decreasing while an output power of the diode laser continues to increase. The laser is further configured with a fiber gain block having an active fiber medium which is pumped with the cumulative pump output and operative to emit a laser output in a power range between hundreds of watts and tens and even hundreds of kilowatts at the desired wavelength in an optimal operation range.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: April 7, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Valentin Fomin, Eugene Scherbakov, Alex Ovtchinnikov, Anton Ferin, Andrey Abramov
  • Publication number: 20190305513
    Abstract: The inventive laser is configured with a plurality of pigtailed multimode (MM) diode lasers each receiving a direct input current at a room temperature which is maintained to be within a 20-25° C. inside the housing of the laser. The diode lasers each are configured to operate at a desired wavelength in an optimal operational range, in which the diode laser operates with a WPE range between 63% and 75%. The direct current inputted in each diode laser is selected to be below a threshold at an efficiency curve of the diode laser after which the efficiency of the diode laser starts decreasing while an output power of the diode laser continues to increase. The laser is further configured with a fiber gain block having an active fiber medium which is pumped with the cumulative pump output and operative to emit a laser output in a power range between hundreds of watts and tens and even hundreds of kilowatts at the desired wavelength in an optimal operation range.
    Type: Application
    Filed: December 2, 2014
    Publication date: October 3, 2019
    Inventors: Valentin Gapontsev, Valentin Fomin, Eugene Scherbakov, Alex Ovtchinnikov, Anton Ferin, Andrey Abramov
  • Patent number: 8828624
    Abstract: A system for recording multiple volume Bragg gratings (VBGs) in a photo thermo-refractive material is configured to implement a method which provides for irradiating the material by a coherent light through a phase mask. The system has a plurality of actuators operative to displace the light source, phase mask and material relative to one another so as to mass produce multiple units of the material each having one or more uniformly configured VBGs.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 9, 2014
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P Gapontsev, Alex Ovtchinnikov, Dmitry Starodubov, Alexey Komissarov
  • Patent number: 8416830
    Abstract: A gain module, operative to output a laser light coupled into a laser system, is structured with at least one gain element radiating the laser light and a spectrally-selective element. The spectrally-selective element includes a slab of photosensitive material and two parallel feedback and isolating Bragg mirrors recorded in the slab. The feedback Bragg mirror is operative to provide a wavelength-dependent feedback so as to cause the laser chip to generate the laser light at the resonance wavelength of the feedback Bragg mirror. The isolating Bragg mirror is automatically adjusted to retroreflect a backreflected signal light, which is generated by the laser system at a signal wavelength different from the resonance wavelength, upon positioning the feedback mirror orthogonally to the laser light.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 9, 2013
    Assignee: IPG Photonics Corporation
    Inventors: Alex Ovtchinnikov, Alexey Komissarov, Nikolai Strougov, Vadim Chuyanov
  • Publication number: 20110027720
    Abstract: A system for recording multiple volume Bragg gratings (VBGs) in a photo thermo-refractive material is configured to implement a method which provides for irradiating the material by a coherent light through a phase mask. The system has a plurality of actuators operative to displace the light source, phase mask and material relative to one another so as to mass produce multiple units of the material each having one or more uniformly configured VBGs.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 3, 2011
    Applicant: IPG Photonics Corporation
    Inventors: Alex Ovtchinnikov, Dmitry Starodubov, Alexey Komissarov, Valentin P. Gapontsev
  • Patent number: 7764723
    Abstract: A powerful high-brightness laser pump modules is configured with a plurality of spaced laser diodes each generating a light beam at a pump wavelength, and respective groups of optical components guiding the light beams along parallel light paths. The groups of the optical components each include a lens assembly and a bending mirror configured to couple the beam light into an output fiber which is common to all groups of the optical component. At least one optical component of each group is provided with a dielectric layer capable of preventing propagation of a backreflected light toward laser diodes at a wavelength different from the pump wavelength.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 27, 2010
    Assignee: IPG Photonics Corporation
    Inventors: Alex Ovtchinnikov, Igor Berishev, Nikolai Strougov, Vadim Chuyanov
  • Publication number: 20100135350
    Abstract: A gain module, operative to output a laser light coupled into a laser system, is structured with at least one gain element radiating the laser light and a spectrally-selective element. The spectrally-selective element includes a slab of photosensitive material and two parallel feedback and isolating Bragg mirrors recorded in the slab. The feedback Bragg mirror is operative to provide a wavelength-dependent feedback so as to cause the laser chip to generate the laser light at the resonance wavelength of the feedback Bragg mirror. The isolating Bragg mirror is automatically adjusted to retroreflect a backreflected signal light, which is generated by the laser system at a signal wavelength different from the resonance wavelength, upon positioning the feedback mirror orthogonally to the laser light.
    Type: Application
    Filed: December 3, 2008
    Publication date: June 3, 2010
    Inventors: Alex Ovtchinnikov, Alexey Komissarov, Nikolai Strougov, Vadim Chuyanov
  • Publication number: 20090323736
    Abstract: A powerful high-brightness laser pump modules is configured with a plurality of spaced laser diodes each generating a light beam at a pump wavelength, and respective groups of optical components guiding the light beams along parallel light paths. The groups of the optical components each include a lens assembly and a bending mirror configured to couple the beam light into an output fiber which is common to all groups of the optical component. At least one optical component of each group is provided with a dielectric layer capable of preventing propagation of a backreflected light toward laser diodes at a wavelength different from the pump wavelength.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Inventors: Alex Ovtchinnikov, Igor Berishev, Nikolai Strougov, Vadim Chuyanov