Patents by Inventor Alex Shafer

Alex Shafer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240253253
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Application
    Filed: April 10, 2024
    Publication date: August 1, 2024
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Patent number: 12030178
    Abstract: A mobile robotic device is disclosed which includes a plurality of one-dimensional (1D) time-of-flight (ToF) sensors. Each 1D ToF sensor of the plurality of 1D ToF sensors may be mounted at a fixed position and orientation on the mobile robotic device. Each pair of 1D ToF sensors of the plurality of 1D ToF sensors may be fixed at respective positions and orientations relative to each other such that respective cones of coverage of the pair of 1D ToF sensors are non-overlapping.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: July 9, 2024
    Assignee: Google LLC
    Inventors: Justine Rembisz, Alex Shafer
  • Patent number: 11975446
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: May 7, 2024
    Assignee: Google LLC
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Publication number: 20230173695
    Abstract: A mobile robotic device is disclosed which includes a plurality of one-dimensional (1D) time-of-flight (ToF) sensors. Each 1D ToF sensor of the plurality of 1D ToF sensors may be mounted at a fixed position and orientation on the mobile robotic device. Each pair of 1D ToF sensors of the plurality of 1D ToF sensors may be fixed at respective positions and orientations relative to each other such that respective cones of coverage of the pair of 1D ToF sensors are non-overlapping.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 8, 2023
    Inventors: Justine Rembisz, Alex Shafer
  • Patent number: 11597104
    Abstract: A mobile robotic device is disclosed which includes a plurality of one-dimensional (1D) time-of-flight (ToF) sensors. Each 1D ToF sensor of the plurality of 1D ToF sensors may be mounted at a fixed position and orientation on the mobile robotic device. Each pair of 1D ToF sensors of the plurality of 1D ToF sensors may be fixed at respective positions and orientations relative to each other such that respective cones of coverage of the pair of 1D ToF sensors are non-overlapping.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 7, 2023
    Assignee: X Development LLC
    Inventors: Justine Rembisz, Alex Shafer
  • Publication number: 20220339803
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 27, 2022
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Patent number: 11407125
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: August 9, 2022
    Assignee: X Development LLC
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Patent number: 11331799
    Abstract: Grasping of an object, by an end effector of a robot, based on a final grasp pose, of the end effector, that is determined after the end effector has been traversed to a pre-grasp pose. An end effector vision component can be utilized to capture instance(s) of end effector vision data after the end effector has been traversed to the pre-grasp pose, and the final grasp pose can be determined based on the end effector vision data. For example, the final grasp pose can be determined based on selecting instance(s) of pre-stored visual features(s) that satisfy similarity condition(s) relative to current visual features of the instance(s) of end effector vision data, and determining the final grasp pose based on pre-stored grasp criteria stored in association with the selected instance(s) of pre-stored visual feature(s).
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: May 17, 2022
    Assignee: X DEVELOPMENT LLC
    Inventor: Alex Shafer
  • Publication number: 20220003620
    Abstract: The present application discloses implementations that relate to devices and techniques for sensing position, force, and torque. Devices described herein may include a light emitter, photodetectors, and a curved reflector. The light emitter may project light onto the curved reflector, which may reflect portions of that projected light onto one or more of the photodetectors. Based on the illuminances measured at the photodetectors, the position of the curved reflector may be determined. In some implementations, the curved reflector and the light emitter may be elastically coupled via one or more spring elements; in these implementations, a force vector representing a magnitude and direction of a force applied against the curved reflector may be determined based on the position of the curved reflector.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Alex Shafer, Adam Reich, Emily Cooper
  • Patent number: 11150152
    Abstract: The present application discloses implementations that relate to devices and techniques for sensing position, force, and torque. Devices described herein may include a light emitter, photodetectors, and a curved reflector. The light emitter may project light onto the curved reflector, which may reflect portions of that projected light onto one or more of the photodetectors. Based on the illuminances measured at the photodetectors, the position of the curved reflector may be determined. In some implementations, the curved reflector and the light emitter may be elastically coupled via one or more spring elements; in these implementations, a force vector representing a magnitude and direction of a force applied against the curved reflector may be determined based on the position of the curved reflector.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: October 19, 2021
    Assignee: X Development LLC
    Inventors: Alex Shafer, Adam Reich, Emily Cooper
  • Patent number: 10926402
    Abstract: A robotic arm system is provided. The system includes a one or more roll and/or angle actuators driven by a unidirectional drive. One or more clutches allow the actuators to engage and disengage with a drive shaft or a reverser assembly or angle drive coupled to the drive shaft, thereby permitting changes in rotational direction for the actuators without a change in the rotational direction of the drive.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 23, 2021
    Assignee: X Development LLC
    Inventors: Alex Shafer, Bruce Schena, Mitchell Barham
  • Publication number: 20210031385
    Abstract: A mobile robotic device is disclosed which includes a plurality of one-dimensional (1D) time-of-flight (ToF) sensors. Each 1D ToF sensor of the plurality of 1D ToF sensors may be mounted at a fixed position and orientation on the mobile robotic device. Each pair of 1D ToF sensors of the plurality of 1D ToF sensors may be fixed at respective positions and orientations relative to each other such that respective cones of coverage of the pair of 1D ToF sensors are non-overlapping.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Justine Rembisz, Alex Shafer
  • Publication number: 20200262089
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Application
    Filed: May 6, 2020
    Publication date: August 20, 2020
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Patent number: 10682774
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 16, 2020
    Assignee: X Development LLC
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Publication number: 20190234819
    Abstract: The present application discloses implementations that relate to devices and techniques for sensing position, force, and torque. Devices described herein may include a light emitter, photodetectors, and a curved reflector. The light emitter may project light onto the curved reflector, which may reflect portions of that projected light onto one or more of the photodetectors. Based on the illuminances measured at the photodetectors, the position of the curved reflector may be determined. In some implementations, the curved reflector and the light emitter may be elastically coupled via one or more spring elements; in these implementations, a force vector representing a magnitude and direction of a force applied against the curved reflector may be determined based on the position of the curved reflector.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Alex Shafer, Adam Reich, Emily Cooper
  • Publication number: 20190184551
    Abstract: A robotic arm system is provided. The system includes a one or more roll and/or angle actuators driven by a unidirectional drive. One or more clutches allow the actuators to engage and disengage with a drive shaft or a reverser assembly or angle drive coupled to the drive shaft, thereby permitting changes in rotational direction for the actuators without a change in the rotational direction of the drive.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 20, 2019
    Inventors: Alex Shafer, Bruce Schena, Mitchell Barham
  • Publication number: 20190176348
    Abstract: A robotic gripping device is provided. The robotic gripping device includes a palm and a plurality of digits coupled to the palm. The robotic gripping device also includes a time-of-flight sensor arranged on the palm such that the time-of-flight sensor is configured to generate time-of-flight distance data in a direction between the plurality of digits. The robotic gripping device additionally includes an infrared camera, including an infrared illumination source, where the infrared camera is arranged on the palm such that the infrared camera is configured to generate grayscale image data in the direction between the plurality of digits.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Jeffrey Bingham, Taylor Alexander, Bianca Homberg, Joseph DelPreto, Alex Shafer
  • Patent number: 10274386
    Abstract: The present application discloses implementations that relate to devices and techniques for sensing position, force, and torque. Devices described herein may include a light emitter, photodetectors, and a curved reflector. The light emitter may project light onto the curved reflector, which may reflect portions of that projected light onto one or more of the photodetectors. Based on the illuminances measured at the photodetectors, the position of the curved reflector may be determined. In some implementations, the curved reflector and the light emitter may be elastically coupled via one or more spring elements; in these implementations, a force vector representing a magnitude and direction of a force applied against the curved reflector may be determined based on the position of the curved reflector.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: April 30, 2019
    Assignee: X Development LLC
    Inventors: Alex Shafer, Adam Reich, Emily Cooper
  • Publication number: 20170363464
    Abstract: The present application discloses implementations that relate to devices and techniques for sensing position, force, and torque. Devices described herein may include a light emitter, photodetectors, and a curved reflector. The light emitter may project light onto the curved reflector, which may reflect portions of that projected light onto one or more of the photodetectors. Based on the illuminances measured at the photodetectors, the position of the curved reflector may be determined. In some implementations, the curved reflector and the light emitter may be elastically coupled via one or more spring elements; in these implementations, a force vector representing a magnitude and direction of a force applied against the curved reflector may be determined based on the position of the curved reflector.
    Type: Application
    Filed: June 20, 2016
    Publication date: December 21, 2017
    Inventors: Alex Shafer, Adam Reich, Emily Cooper
  • Patent number: 9566715
    Abstract: Systems and methods relating to a clutch system for use in controllably transmitting torque from an input shaft to an output shaft. The clutch system has a torque transmission fluid that has a viscosity that changes based on the strength of an electromagnetic field passing through the fluid. A number of sensors are placed at different radial locations on the torque transmission disks to detect the strength of the electromagnetic field. Based on the strength of the electromagnetic field, the amount of torque being transmitted from the input shaft to the output shaft can be adjusted. Also disclosed is a distributed actuation architecture that uses this clutch system. The distributed actuation architecture allows for the use of a single drive motor in conjunction with multiple instances of the clutch system to actuate a mechanical linkage, such as a robotic arm.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: February 14, 2017
    Assignee: THE UNIVERSITY OF WESTERN ONTARIO
    Inventors: Mehrdad Kermani, Alex Shafer