Patents by Inventor Alex Sirkis

Alex Sirkis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11843043
    Abstract: A method fabricating a GaN based sensor including: forming a gate dielectric layer over a GaN hetero-structure including a GaN layer formed over a substrate and a first barrier layer formed over the GaN layer; forming a first mask over the gate dielectric layer; etching the gate dielectric layer and the first barrier layer through the first mask, thereby forming source and drain contact openings; removing the first mask; forming a metal layer over the gate dielectric layer, wherein the metal layer extends into the source and drain contact openings; forming a second mask over the metal layer; etching the metal layer, the gate dielectric layer and the GaN heterostructure through the second mask, wherein a region of the GaN heterostructure is exposed; and thermally activating the metal layer in the source and drain contact openings. The gate dielectric may exhibit a sloped profile, and dielectric spacers may be formed.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: December 12, 2023
    Assignee: Tower Semiconductor Ltd.
    Inventors: Ruth Shima-Edelstein, Ronen Shaul, Roy Strul, Anatoly Sergienko, Liz Poliak, Ido Gilad, Alex Sirkis, Yakov Roizin
  • Publication number: 20220059675
    Abstract: A method fabricating a GaN based sensor including: forming a gate dielectric layer over a GaN hetero-structure including a GaN layer formed over a substrate and a first barrier layer formed over the GaN layer; forming a first mask over the gate dielectric layer; etching the gate dielectric layer and the first barrier layer through the first mask, thereby forming source and drain contact openings; removing the first mask; forming a metal layer over the gate dielectric layer, wherein the metal layer extends into the source and drain contact openings; forming a second mask over the metal layer; etching the metal layer, the gate dielectric layer and the GaN heterostructure through the second mask, wherein a region of the GaN heterostructure is exposed; and thermally activating the metal layer in the source and drain contact openings. The gate dielectric may exhibit a sloped profile, and dielectric spacers may be formed.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Ruth Shima-Edelstein, Ronen Shaul, Roy Strul, Anatoly Sergienko, Liz Poliak, Ido Gilad, Alex Sirkis, Yakov Roizin
  • Patent number: 11195933
    Abstract: A method fabricating a GaN based sensor including: forming a gate dielectric layer over a GaN hetero-structure including a GaN layer formed over a substrate and a first barrier layer formed over the GaN layer; forming a first mask over the gate dielectric layer; etching the gate dielectric layer and the first barrier layer through the first mask, thereby forming source and drain contact openings; removing the first mask; forming a metal layer over the gate dielectric layer, wherein the metal layer extends into the source and drain contact openings; forming a second mask over the metal layer; etching the metal layer, the gate dielectric layer and the GaN heterostructure through the second mask, wherein a region of the GaN heterostructure is exposed; and thermally activating the metal layer in the source and drain contact openings. The gate dielectric may exhibit a sloped profile, and dielectric spacers may be formed.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: December 7, 2021
    Assignee: Tower Semiconductor Ltd.
    Inventors: Ruth Shima-Edelstein, Ronen Shaul, Roy Strul, Anatoly Sergienko, Liz Poliak, Ido Gilad, Alex Sirkis, Yakov Roizin
  • Publication number: 20210242326
    Abstract: A method fabricating a GaN based sensor including: forming a gate dielectric layer over a GaN hetero-structure including a GaN layer formed over a substrate and a first barrier layer formed over the GaN layer; forming a first mask over the gate dielectric layer; etching the gate dielectric layer and the first barrier layer through the first mask, thereby forming source and drain contact openings; removing the first mask; forming a metal layer over the gate dielectric layer, wherein the metal layer extends into the source and drain contact openings; forming a second mask over the metal layer; etching the metal layer, the gate dielectric layer and the GaN heterostructure through the second mask, wherein a region of the GaN heterostructure is exposed; and thermally activating the metal layer in the source and drain contact openings. The gate dielectric may exhibit a sloped profile, and dielectric spacers may be formed.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 5, 2021
    Inventors: Ruth Shima-Edelstein, Ronen Shaul, Roy Strul, Anatoly Sergienko, Liz Poliak, Ido Gilad, Alex Sirkis, Yakov Roizin
  • Patent number: 10840128
    Abstract: A method for manufacturing a semiconductor device, the method may include forming a first part of a hollow in first part of a first layer of the semiconductor device and coating a sidewall of the first part of the hollow with an etch stop material, wherein the forming of the first part of the hollow comprises performing at least one iteration of (i) anisotropic etching and (ii) deposition of the etch stop material; wherein when completed, the semiconductor device comprises a radio frequency (RF) circuit; forming a second part of the hollow in a second part of the first layer by performing isotropic etching that involves directing plasma through the first part of the hollow; wherein the second part of the hollow reaches either (a) a bottom of a second layer of the semiconductor device or (b) the RF circuit; and wherein at least a majority of the second part of the hollow is wider than at least a majority of the first part of the hollow.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: November 17, 2020
    Assignee: Tower Semiconductors Ltd.
    Inventors: Alex Sirkis, Alexey Heiman, Yakov Roizin
  • Publication number: 20200227309
    Abstract: A method for manufacturing a semiconductor device, the method may include forming a first part of a hollow in first part of a first layer of the semiconductor device and coating a sidewall of the first part of the hollow with an etch stop material, wherein the forming of the first part of the hollow comprises performing at least one iteration of (i) anisotropic etching and (ii) deposition of the etch stop material; wherein when completed, the semiconductor device comprises a radio frequency (RF) circuit; forming a second part of the hollow in a second part of the first layer by performing isotropic etching that involves directing plasma through the first part of the hollow; wherein the second part of the hollow reaches either (a) a bottom of a second layer of the semiconductor device or (b) the RF circuit; and wherein at least a majority of the second part of the hollow is wider than at least a majority of the first part of the hollow.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 16, 2020
    Inventors: Alex Sirkis, Alexey Heiman, Yakov Roizin