Patents by Inventor Alex Soriano

Alex Soriano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131085
    Abstract: The present invention provides a solid oral pharmaceutical composition comprising a pharmaceutically effective amount of living microorganisms and one or more pharmaceutically acceptable water absorbing excipient(s), wherein the composition has a water content, determined according to European Pharmacopoeia 9.4, section 2.5.12., from 0.5 to 30% with respect the total weight of the composition. The invention also provides processes for its preparation as well as it use in therapy. The live-cell based composition of the invention is stable at mild conditions.
    Type: Application
    Filed: December 15, 2023
    Publication date: April 25, 2024
    Applicants: INSTITUT D'INVESTIGACIONS BIOMÈDIQUES AUGUST PI I SUNYER (IDIBAPS), FUNDACIÓ CLÍNIC PER A LA RECERCA BIOMÈDICA, HOSPITAL CLÍNIC DE BARCELONA, UNIVERSITAT DE BARCELONA
    Inventors: Josep M. SUÑÉ NEGRE, Alex SORIANO VILADOMIU, Andrea AIRA GOMEZ, Csaba FEHER
  • Publication number: 20230285757
    Abstract: A leadless biostimulator has a housing including an electronics compartment, an electronics assembly mounted in the electronics compartment, a proximal electrode that disposed on and/or integrated into the housing, and an electrical feedthrough assembly. The electrical feedthrough assembly includes a distal electrode and a flange. The flange is mounted on the housing. The distal electrode is electrically isolated from the flange by an insulator and configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A mount is mounted on the flange and thereby mounted on the electrical feedthrough assembly. A fixation element is mounted on the mount and configured to facilitate fixation of the leadless biostimulator to tissue of a patient.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Publication number: 20230261368
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 11691017
    Abstract: An electrical feedthrough assembly, which is configured to be mounted on a housing of a leadless biostimulator, comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within the housing of the leadless biostimulator.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: July 4, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11670843
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 6, 2023
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20230028735
    Abstract: An implant delivery instrument includes a housing with a main body section that defines a passage therethrough from a front end of the main body section to a back end of the main body section. The passage receives an obturator through an opening at the back end, and also receives an implant device. Movement of the obturator through the passage pushes the implant device through a discharge opening at the front end and through an incision into a subdermal pocket of a patient. The housing includes a tab connected to and projecting from the front end of the main body section. The tab has a blunt dissection tip for maintaining the incision in an open state without creating or enlarging the incision, and the tab is configured to surround the implant device moving through the discharge opening along only one side of the implant device.
    Type: Application
    Filed: May 19, 2022
    Publication date: January 26, 2023
    Inventors: Zachary Hanze, Bei Ning Zhang, Arees Garabed, Rodney Hawkins, Xiangqun Chen, Alexander Davis Robertson, Alex Soriano, Kyungmoo Ryu
  • Patent number: 11464988
    Abstract: A header-less implantable medical device, system and method are provided. The device includes an electronics module including circuitry, a battery, a receptacle assembly having an interior chamber and a receptable inlet configured to receive a lead connector assembly. A device housing has a case body that includes side walls and a peripheral edge that defines a single common chamber. The electronics module, battery and receptacle assembly are provided within the single common chamber. A connector opening is provided in the case body and joined to the receptacle inlet to form a passage through the case body into the interior chamber of the receptacle assembly.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: October 11, 2022
    Assignee: PACESETTER, INC.
    Inventors: Wisit Lim, Ofer Rosenzweig, Reza Shahandeh, Alex Soriano
  • Publication number: 20220249842
    Abstract: A leadless biostimulator, and an electrical feedthrough assembly for use therewith, are described herein. The leadless biostimulator comprises an electrode body including a cup having an electrode wall extending distally from an electrode base around an electrode cavity, an electrode tip mounted on a distal end of the electrode body, and a filler in the electrode cavity between the electrode base and the electrode tip, wherein the filler includes a therapeutic agent. The electrode tip is configured to be placed in contact with target tissue to which a pacing impulse is to be transmitted by the leadless biostimulator. A pin extends proximally from the electrode base, wherein the pin is configured to be into contact with an electrical connector of an electronics assembly within a housing of the leadless biostimulator, and wherein the electrical feedthrough assembly is configured to be mounted on the housing of the leadless biostimulator.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 11, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 11331496
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: May 17, 2022
    Assignee: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Publication number: 20220143107
    Abstract: The present invention provides a solid oral pharmaceutical composition comprising a pharmaceutically effective amount of living microorganisms and one or more pharmaceutically acceptable water absorbing excipient(s), wherein the composition has a water content, determined according to European Pharmacopoeia 9.4, section 2.5.12., from 0.5 to 30% with respect the total weight of the composition. The invention also provides processes for its preparation as well as it use in therapy. The live-cell based composition of the invention is stable at mild conditions.
    Type: Application
    Filed: April 14, 2020
    Publication date: May 12, 2022
    Applicants: INSTITUT D'INVESTIGACIONS BIOMÈDIQUES AUGUST PI I SUNYER (IDIBAPS), FUNDACIÓ CLÍNIC PER A LA RECERCA BIOMÈDICA, HOSPITAL CLÍNIC DE BARCELONA, UNIVERSITAT DE BARCELONA
    Inventors: Josep M. SUÑÉ NEGRE, Alex SORIANO VILADOMIU, Andrea AIRA GOMEZ, Csaba FEHER
  • Publication number: 20220087708
    Abstract: A blade for a cutting instrument includes a handle, a body, and at least three cutting edges along the body. The body has first and second sides extending along a longitudinal center axis. The body has a proximal end at the handle and a distal tip remote from the handle. The at least three cutting edges are oriented at corresponding angles with respect to the longitudinal center axis and are asymmetrically distributed with respect to the longitudinal center axis.
    Type: Application
    Filed: June 18, 2021
    Publication date: March 24, 2022
    Inventors: Xiangqun Chen, Rodney Hawkins, Adam Evard, Alex Soriano, Ofer Rosenzweig
  • Publication number: 20220079523
    Abstract: Systems and methods are provided for implanting an implantable cardiac monitor. An insertion system includes an implantable cardiac monitor (ICM). An insertion housing comprises a passage extending from a first end of the insertion housing to a second end of the insertion housing. The passage configured to receive the obturator and a receptacle in communication with the passage and an external environment. The receptacle configured to receive the ICM. An obturator is configured to move within the passage when the obturator is moved relative to the insertion housing. The obturator has a channel forming section at a distal end thereof and a motion limiter is provided on at least one of the shaft and the insertion housing.
    Type: Application
    Filed: November 30, 2021
    Publication date: March 17, 2022
    Inventors: Li Jin, Gene A. Bornzin, Zoltan Somogyi, Alex Soriano, Jake Singer, Tejpal Singh, Wenbo Hou, Julie Prillinger, Armando M. Cappa, Mitch Goodman, Tracee Eidenschink
  • Publication number: 20220052448
    Abstract: Methods for manufacturing implantable electronic devices include forming an antenna of the implantable electronic device by delivering an antenna trace within a dielectric antenna body. The antenna trace includes a first trace portion disposed in a first transverse layer and defining a first trace path and a second trace portion disposed in a second transverse layer longitudinally offset from the first transverse layer and defining a second trace path. If projected to be coplanar, the first trace path defines a trace boundary and the second trace path is within the trace boundary.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20220001186
    Abstract: A header-less implantable medical device, system and method are provided. The device includes an electronics module including circuitry, a battery, a receptacle assembly having an interior chamber and a receptable inlet configured to receive a lead connector assembly. A device housing has a case body that includes side walls and a peripheral edge that defines a single common chamber. The electronics module, battery and receptacle assembly are provided within the single common chamber. A connector opening is provided in the case body and joined to the receptacle inlet to form a passage through the case body into the interior chamber of the receptacle assembly.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Inventors: Wisit Lim, Ofer Rosenzweig, Reza Shahandeh, Alex Soriano
  • Patent number: 11189915
    Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: November 30, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20200161750
    Abstract: Disclosed herein is an implantable electronic device including a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly includes an antenna including a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly includes one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Publication number: 20200129763
    Abstract: A biostimulator, such as a leadless cardiac pacemaker, including an electrical feedthrough assembly mounted on a housing, is described. An electronics compartment of the housing can contain an electronics assembly to generate a pacing impulse, and the electrical feedthrough assembly can include an electrode tip to deliver the pacing impulse to a target tissue. A monolithically formed electrode body can have a pin integrated with a cup. The pin can be electrically connected to the electronics assembly, and the cup can be electrically connected to the electrode tip. Accordingly, the biostimulator can transmit the pacing impulse through the monolithic pin and cup to the target tissue. The cup can hold a filler having a therapeutic agent for delivery to the target tissue and may include retention elements for maintaining the filler at a predetermined location within the cup.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 30, 2020
    Applicant: Pacesetter, Inc.
    Inventors: Paul Paspa, Thomas B. Eby, Matthew G. Fishler, Carl Lance Boling, Thomas Robert Luhrs, Russell Klehn, Tyler J. Strang, Arees Garabed, Kavous Sahabi, Brett Villavicencio, Wes Alleman, Alex Soriano, Matthew R. Malone, Conor P. Foley
  • Patent number: 10587038
    Abstract: Disclosed herein is an implantable electronic device having a housing containing an electrical circuit. The implantable electronic device further includes an antenna assembly coupled to the electrical circuit. The antenna assembly has an antenna with a dielectric antenna body within which an antenna trace is disposed. Portions of the antenna trace are disposed in offset transverse layers in a non-overlapping arrangement, thereby reducing capacitive coupling between the layers of the antenna trace. In certain implementations, the antenna assembly has one or more capacitive features that selectively overlap portions of the antenna trace and facilitate tuning of the antenna.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: March 10, 2020
    Assignee: Pacesetter, Inc.
    Inventors: Armando M. Cappa, Jorge N. Amely-Velez, Alan B. Vogel, Wisit Lim, John R. Gonzalez, Alexander Robertson, Alex Soriano, Evan Sheldon, Perry Li, Jeffery Crook
  • Patent number: 10206518
    Abstract: A compact jumper for an infant or young child. The compact jumper includes a support frame, at least one resilient member, and a child-receiving apparatus. The support frame is configured for resting on a support surface and the at least one resilient member is coupled to a portion of the support frame. The child-receiving apparatus is supported by the at least one resilient member, with a collar mounting the resilient member to the child-receiving apparatus, and is guided by a portion of the support frame. The child-receiving apparatus is movable with respect to the support surface as the child moves and jumps.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 19, 2019
    Assignee: KIDS II, INC.
    Inventors: Stephen R. Burns, Alex Soriano, Blake D. Pomeroy, Cary Costello
  • Publication number: 20180168686
    Abstract: Systems and methods are provided for implanting an implantable cardiac monitor. An insertion system includes an implantable cardiac monitor (ICM). An insertion housing comprises a passage extending from a first end of the insertion housing to a second end of the insertion housing. The passage configured to receive the obturator and a receptacle in communication with the passage and an external environment. The receptacle configured to receive the ICM. An obturator is configured to move within the passage when the obturator is moved relative to the insertion housing. The obturator has a channel forming section at a distal end thereof and a motion limiter is provided on at least one of the shaft and the insertion housing.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Li Jin, Gene A. Bornzin, Zoltan Somogyi, Alex Soriano, Jake Singer, Tejpal Singh, Lisa Weinberg, Wenbo Hou, Julie Prillinger, Armando M. Cappa, Mtich Goodman, Tracee Eidenschink