Patents by Inventor Alex T. Roth

Alex T. Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100094088
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Application
    Filed: April 16, 2009
    Publication date: April 15, 2010
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Christopher A. Julian
  • Patent number: 7658755
    Abstract: A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: February 9, 2010
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver
  • Publication number: 20090182416
    Abstract: Torque shafts and other related systems and methods are described herein. The torque shafts are both flexible and capable of transmitting torque. The torque shafts are useful for procedures that require torque and pushability to drive or deploy a device. The flexibility and pushability of the torque shafts enable them to curve along a tortuous path, and the torque transferring capability of the shafts enable them to transmit torque along the shaft.
    Type: Application
    Filed: June 19, 2007
    Publication date: July 16, 2009
    Applicant: AORTX, INC.
    Inventors: David C. Forster, Brian Beckey, Brandon Walsh, Scott Heneveld, Alex T. Roth
  • Publication number: 20090132035
    Abstract: Prosthetic valves and their component parts are described, as are prosthetic valve delivery devices and methods for their use. The prosthetic valves are particularly adapted for use in percutaneous aortic valve replacement procedures. The delivery devices may be adapted for use in minimally invasive or endovascular surgical procedures.
    Type: Application
    Filed: September 12, 2008
    Publication date: May 21, 2009
    Inventors: Alex T. Roth, David C. Forster, Brandon G. Walsh, Brian Beckey, Scott Heneveld, Richard S. Ginn
  • Publication number: 20090099554
    Abstract: Torque shafts and other related systems and methods are described herein. In one embodiment, the torque shafts are both flexible and capable of transmitting torque. An apparatus for transmission of torque includes an elongate body, comprising a plurality of joint segments, each joint segment configured to pivot with respect to an adjacent segment and being further configured to have at least two link elements.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 16, 2009
    Inventors: David C. Forster, Alex T. Roth, Brian Beckey, Brandon G. Walsh, Scott Heneveld
  • Patent number: 7258662
    Abstract: Methods and apparatuses for temperature modification of a patient, or selected regions thereof, including an induced state of hypothermia. The temperature modification is accomplished using an in-dwelling heat exchange catheter within which a fluid heat exchange medium circulates. A heat exchange cassette of any one of several disclosed variations is attached to the circulatory flow lines of the catheter, the heat exchange cassette being sized to engage a cavity within one of various described re-usable control units. The control units include a heater/cooler device, a user input device, and a processor connected to receive input from various sensors around the body and the system. The heater/cooler device may be thermoelectric to enable both heating and cooling based on polarity. A temperature control scheme for ramping the body temperature up or down without overshoot is provided.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: August 21, 2007
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Wade A. Keller, Alex T. Roth, Nicole Denise Bloom
  • Patent number: 7247165
    Abstract: A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: July 24, 2007
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver
  • Patent number: 7175649
    Abstract: Methods and apparatuses for temperature modification of a patient, or selected regions thereof, including an induced state of hypothermia. The temperature modification is accomplished using an in-dwelling heat exchange catheter within which a fluid heat exchange medium circulates. A heat exchange cassette of any one of several disclosed variations is attached to the circulatory flow lines of the catheter, the heat exchange cassette being sized to engage a cavity within one of various described re-usable control units. The control units include a heater/cooler device, a user input device, and a processor connected to receive input from various sensors around the body and the system. The heater/cooler device may be thermoelectric to enable both heating and cooling based on polarity. A temperature control scheme for ramping the body temperature up or down without overshoot is provided.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: February 13, 2007
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Wade A. Keller, Alex T. Roth, Nicole Denise Bloom
  • Patent number: 7100614
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: September 5, 2006
    Assignee: Heartport, Inc.
    Inventors: John H. Stevens, Bruce A. Reitz, Alex T. Roth, William S. Peters, Hanson S. Gifford
  • Patent number: 7025722
    Abstract: The invention provides a system and method for performing less-invasive surgical procedures within a body cavity. In a preferred embodiment, the invention provides a system and method for isolating a surgical site such as an anastomosis between an internal mammary artery and a coronary artery in a thoracoscopic coronary artery bypass grafting procedure. The system comprises a foot (11) pivotally coupled to the distal end of a shaft (3) by a linkage (13). The foot has first and second engaging portions (15, 17) with contact surfaces for engaging a tissue surface. The engaging portions are movable between an open position, where the contact surfaces are separated by a gap, and a collapsed position, where the foot is configured for delivery through the percutaneous penetration.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: April 11, 2006
    Assignee: Heartport, Inc.
    Inventors: Mark A. Vierra, Alex T. Roth
  • Patent number: 6997942
    Abstract: A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: February 14, 2006
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Ed Oliver
  • Patent number: 6955175
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: October 18, 2005
    Inventors: John H. Stevens, Bruce A. Reitz, Alex T. Roth, William S. Peters, Hanson S. Gifford
  • Patent number: 6913600
    Abstract: Devices and methods are provided for temporarily inducing cardioplegic arrest in the heart of a patient and for establishing cardiopulmonary bypass in order to facilitate surgical procedures on the heart and its related blood vessels. Specifically, a catheter based system is provided for isolating the heart and coronary blood vessels of a patient from the remainder of the arterial system and for infusing a cardioplegic agent into the patient's coronary arteries to induce cardioplegic arrest in the heart. The system includes an endoaortic partitioning catheter having an expandable balloon at its distal end which is expanded within the ascending aorta to occlude the aortic lumen between the coronary ostia and the brachiocephalic artery. Means for centering the catheter tip within the ascending aorta include specially curved shaft configurations, eccentric or shaped occlusion balloons and a steerable catheter tip, which may be used separately or in combination.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: July 5, 2005
    Assignee: Heartport, Inc.
    Inventors: Kirsten L. Valley, David W. Snow, Timothy C. Corvi, Brian S. Donlon, Stephen W. Boyd, Sylvia W. Fan, Alex T. Roth, William S. Peters, Richard J. Mueller, Jr., Hanson S. Gifford, III
  • Patent number: 6890347
    Abstract: A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: May 10, 2005
    Assignee: Radiant Medical, Inc.
    Inventors: Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Ed Oliver
  • Patent number: 6858005
    Abstract: A steerable, tendon-driven endoscope is described herein. The endoscope has an elongated body with a manually or selectively steerable distal portion and an automatically controlled, segmented proximal portion. The steerable distal portion and the segment of the controllable portion are actuated by at least two tendons. As the endoscope is advanced, the user maneuvers the distal portion, and a motion controller actuates tendons in the segmented proximal portion so that the proximal portion assumes the selected curve of the selectively steerable distal portion. By this method the selected curves are propagated along the endoscope body so that the endoscope largely conforms to the pathway selected. When the endoscope is withdrawn proximally, the selected curves can propagate distally along the endoscope body. This allows the endoscope to negotiate tortuous curves along a desired path through or around and between organs within the body.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Neo Guide Systems, Inc.
    Inventors: Robert M. Ohline, Joseph M. Tartaglia, Amir Belson, Alex T. Roth, Wade A. Keller, Scott C. Anderson, Chris A. Julian
  • Publication number: 20040254425
    Abstract: The invention provides a system and method for performing less-invasive surgical procedures within a body cavity. In a preferred embodiment, the invention provides a system and method for isolating a surgical site such as an anastomosis between an internal mammary artery and a coronary artery in a thoracoscopic coronary artery bypass grafting procedure. The system comprises a foot (11) pivotally coupled to the distal end of a shaft (3) by a linkage (13). The foot has first and second engaging portions (15, 17) with contact surfaces for engaging a tissue surface. The engaging portions are movable between an open position, where the contact surfaces are separated by a gap, and a collapsed position, where the foot is configured for delivery through the percutaneous penetration.
    Type: Application
    Filed: April 30, 2004
    Publication date: December 16, 2004
    Inventors: Mark A. Vierra, Alex T. Roth
  • Patent number: 6821247
    Abstract: The invention provides a system and method for performing less-invasive surgical procedures within a body cavity. In a preferred embodiment, the invention provides a system and method for isolating a surgical site such as an anastomosis between an internal mammary artery and a coronary artery in a thoracoscopic coronary artery bypass grafting procedure. The system comprises a foot (11) pivotally coupled to the distal end of a shaft (3) by a linkage (13). The foot has first and second engaging portions (15, 17) with contact surfaces for engaging a tissue surface. The engaging portions are movable between an open position, where the contact surfaces are separated by a gap, and a collapsed position, where the foot is configured for delivery through the percutaneous penetration.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: November 23, 2004
    Assignee: Heartport, Inc.
    Inventors: Mark A. Vierra, Alex T. Roth
  • Publication number: 20040143311
    Abstract: A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
    Type: Application
    Filed: January 5, 2004
    Publication date: July 22, 2004
    Inventors: Timothy R. Machold, Nicole Denise Bloom, Alex T. Roth, Dave J. Scott, Jose Alejandro, Edward A. Oliver
  • Publication number: 20040117032
    Abstract: Devices, systems, and methods are provided for accessing the interior of the heart and performing procedures therein while the heart is beating. In one embodiment, a tubular access device having an inner lumen is provided for positioning through a penetration in a muscular wall of the heart, the access device having a means for sealing within the penetration to inhibit leakage of blood through the penetration. The sealing means may comprise a balloon or flange on the access device, or a suture placed in the heart wall to gather the heart tissue against the access device. An obturator is removably positionable in the inner lumen of the access device, the obturator having a cutting means at its distal end for penetrating the muscular wall of the heart. The access device is preferably positioned through an intercostal space and through the muscular wall of the heart.
    Type: Application
    Filed: November 21, 2003
    Publication date: June 17, 2004
    Inventor: Alex T. Roth
  • Publication number: 20040116988
    Abstract: A catheter system for controlling the body temperature of a patient by modifying the temperature of blood flowing within a blood vessel of the patient. The catheter system comprises a catheter body having a heat exchange region in contact with the blood; and a temperature probe having a distal end that extends from the catheter body, thereby monitoring the temperature of blood flowing within the blood vessel.
    Type: Application
    Filed: December 9, 2003
    Publication date: June 17, 2004
    Applicant: Radiant Medical, Inc.
    Inventors: Amy L. Hammack, Jeff P. Callister, Paul M. Stull, Alex T. Roth, William S. Tremulis