Patents by Inventor Alex Yoon

Alex Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12180446
    Abstract: The presently disclosed subject matter provides native extracellular matrix-derived membrane inserts for organs-on-chips, multilayer microfluidics microdevices, bioreactors, tissue culture inserts, and two-dimensional and three-dimensional cell culture systems. A microfluidic cell culture is provided that can include at least one membrane including extracellular matrix (ECM) material. The ECM material can be used to construct a perfusable microfluidic system including a plurality of layers of microfabricated cell culture chambers. The microfluidic cell culture can further include a lower layer including a microchannel on which the at least one membrane is placed and an upper layer including another microchannel. The upper layer can be bonded to the lower layer.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: December 31, 2024
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Dongeun Huh, Mark Mondrinos, Alex Yoon Yi, Jeongyun Seo
  • Patent number: 11041128
    Abstract: A catalyst system has been designed that disrupts the sedimentation process. The catalyst system achieves this by saturating key feed components before the feed components are stripped into their incompatible aromatic cores. The efficacy of this disruptive catalyst system is particularly evident in a hydrocracker configuration that runs in two-stage-recycle operation. The catalyst is a self-supported multi-metallic catalyst prepared from a precursor in the hydroxide form, and the catalyst must be toward the top level of the second stage of the two-stage system.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 22, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Derek Blackwell, Viorel Duma, Varut Komalarajun, Alexander E. Kuperman, Hyunuk Ryu, Horacio Trevino, Alex Yoon, Ujjal Mukherjee
  • Patent number: 10968405
    Abstract: A catalyst system has been designed that disrupts the sedimentation process. The catalyst system achieves this by saturating key feed components before the feed components are stripped into their incompatible aromatic cores. The efficacy of this disruptive catalyst system is particularly evident in a hydrocracker configuration that runs in two-stage-recycle operation. The catalyst is a self-supported multi-metallic catalyst prepared from a precursor in the hydroxide form, and the catalyst must be toward the top level of the second stage of the two-stage system.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: April 6, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodoras Ludovicus Michael Maesen, Derek Blackwell, Viorel Duma, Varut Komalarajun, Alexander E. Kuperman, Hyunuk Ryu, Horacio Trevino, Alex Yoon, Ujjal Mukherjee
  • Publication number: 20200347309
    Abstract: A catalyst system has been designed that disrupts the sedimentation process. The catalyst system achieves this by saturating key feed components before the feed components are stripped into their incompatible aromatic cores. The efficacy of this disruptive catalyst system is particularly evident in a hydrocracker configuration that runs in two-stage-recycle operation. The catalyst is a self-supported multi-metallic catalyst prepared from a precursor in the hydroxide form, and the catalyst must be toward the top level of the second stage of the two-stage system.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 5, 2020
    Applicant: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael MAESEN, Derek BLACKWELL, Viorel DUMA, Varut KOMALARAJUN, Alexander E. KUPERMAN, Hyunuk RYU, Horacio TREVINO, Alex YOON, Ujjal MUKHERJEE
  • Publication number: 20200048566
    Abstract: A catalyst system has been designed that disrupts the sedimentation process. The catalyst system achieves this by saturating key feed components before the feed components are stripped into their incompatible aromatic cores. The efficacy of this disruptive catalyst system is particularly evident in a hydrocracker configuration that runs in two-stage-recycle operation. The catalyst is a self-supported multi-metallic catalyst prepared from a precursor in the hydroxide form, and the catalyst must be toward the top level of the second stage of the two-stage system.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 13, 2020
    Applicant: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael MAESEN, Derek BLACKWELL, Viorel DUMA, Varut KOMALARAJUN, Alexander E. KUPERMAN, Hyunuk RYU, Horacio TREVINO, Alex YOON, Ujjal MUKHERJEE
  • Patent number: 10339456
    Abstract: A VoLTE diagnostic engine may receive VoLTE call records of VoLTE calls that are carried by a wireless carrier network for multiple user devices. The VoLTE call records may include performance indicators and call features for the voice calls. Each call feature of a VoLTE call may represent a circumstance under which the VoLTE call is established and ended. The VoLTE diagnostic engine may apply a decision tree to the VoLTE call records to identify critical features of one or more call conditions that lead to Quality of Experience (QoE) problems for the VoLTE calls captured in the VoLTE call records. Each call condition may include a subset of the call features. Further, the VoLTE diagnostic engine may apply a classifier on the critical features to determine a root cause of a QoE problem for at least one call conditions.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: July 2, 2019
    Assignee: T-Mobile USA, Inc.
    Inventors: Jie Hui, Yunhan Jia, Yihua Guo, Alex Yoon, Antoine Tran, Kranthi Sontineni, Z. Morley Mao
  • Publication number: 20180192303
    Abstract: A VoLTE diagnostic engine may receive VoLTE call records of VoLTE calls that are carried by a wireless carrier network for multiple user devices. The VoLTE call records may include performance indicators and call features for the voice calls. Each call feature of a VoLTE call may represent a circumstance under which the VoLTE call is established and ended. The VoLTE diagnostic engine may apply a decision tree to the VoLTE call records to identify critical features of one or more call conditions that lead to Quality of Experience (QoE) problems for the VoLTE calls captured in the VoLTE call records. Each call condition may include a subset of the call features. Further, the VoLTE diagnostic engine may apply a classifier on the critical features to determine a root cause of a QoE problem for at least one call conditions.
    Type: Application
    Filed: May 4, 2017
    Publication date: July 5, 2018
    Inventors: Jie Hui, Yunhan Jia, Yihua Guo, Alex Yoon, Antoine Tran, Kranthi Sontineni, Z. Morley Mao
  • Patent number: 8244315
    Abstract: Methods and apparatuses for remotely recording video content on a personal video recording server, at the request of a user of a mobile device, and obtaining that recorded content on the mobile device, in some embodiments, at a later time.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: August 14, 2012
    Assignee: Vidiator Enterprises Inc.
    Inventors: Jaeyong Lee, Alex Yoon
  • Patent number: 8133812
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20100009535
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto a barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Application
    Filed: September 18, 2009
    Publication date: January 14, 2010
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20090298485
    Abstract: Methods and apparatuses for remotely recording video content on a personal video recording server, at the request of a user of a mobile device, and obtaining that recorded content on the mobile device, in some embodiments, at a later time.
    Type: Application
    Filed: May 17, 2007
    Publication date: December 3, 2009
    Applicant: Vidiator Enterprises, Inc
    Inventors: Jaeyong Lee, Alex Yoon
  • Patent number: 7592259
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: September 22, 2009
    Assignee: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20090045100
    Abstract: This invention relates to a multi-stage process for hydroprocessing gas oils. Preferably, each stage possesses at least one hydrocracking zone. The second stage and any subsequent stages possess an environment having a low heteroatom content. Light products, such as naphtha, kerosene and diesel, may be recycled from fractionation (along with light products from other sources) to the second stage (or a subsequent stage) in order to produce a larger yield of lighter products, such as gas and naphtha. Pressure in the zone or zones subsequent to the initial zone is from 500 to 1000 psig lower than the pressure in the initial zone, in order to provide cost savings and minimize overcracking.
    Type: Application
    Filed: October 23, 2008
    Publication date: February 19, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: H. Alex Yoon, Jay B. Parekh, Arthur J. Dahlberg
  • Publication number: 20080283444
    Abstract: This invention relates to a multi-stage process for hydroprocessing gas oils. Preferably, each stage possesses at least one hydrocracking zone. The second stage and any subsequent stages possess an environment having a low heteroatom content. Light products, such as naphtha, kerosene and diesel, may be recycled from fractionation (along with light products from other sources) to the second stage (or a subsequent stage) in order to produce a larger yield of lighter products, such as gas and naphtha. Pressure, in the zone or zones subsequent to the initial zone is from 500 to 1000 psig lower than the pressure in the initial zone, in order to provide cost savings and minimize overcracking.
    Type: Application
    Filed: June 12, 2008
    Publication date: November 20, 2008
    Applicant: CHEVRON U.S.A. INC.
    Inventors: H. Alex Yoon, Jay Parekh, Arthur J. Dahlberg
  • Publication number: 20080146025
    Abstract: This invention pertains to methods and systems for fabricating semiconductor devices. One aspect of the present invention is a method of depositing a gapfill copper layer onto barrier layer for semiconductor device metallization. In one embodiment, the method includes forming the barrier layer on a surface of a substrate and subjecting the barrier layer to a process condition so as to form a removable passivated surface on the barrier layer. The method further includes removing the passivated surface from the barrier layer and depositing the gapfill copper layer onto the barrier layer. Another aspect of the present invention is an integrated system for depositing a copper layer onto a barrier layer for semiconductor device metallization.
    Type: Application
    Filed: December 18, 2006
    Publication date: June 19, 2008
    Inventors: Yezdi Dordi, John Boyd, Fritz Redeker, William Thie, Tiruchirapalli Arunagiri, Alex Yoon
  • Publication number: 20030221990
    Abstract: This invention relates to a multi-stage process for hydroprocessing gas oils. Preferably, each stage possesses at least one hydrocracking zone. The second stage and any subsequent stages possess an environment having a low heteroatom content. Light products, such as naphtha, kerosene and diesel, may be recycled from fractionation (along with light products from other sources) to the second stage (or a subsequent stage) in order to produce a larger yield of lighter products, such as gas and naphtha. Subsequent zones are maintained at a lower pressure than that of the first zone, thereby reducing operating expenses.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Inventors: H. Alex Yoon, Jay Parekh, Arthur J. Dahlberg
  • Patent number: 5377087
    Abstract: An orientable passenger reading light is provided for vehicles having a two-part removable bezel arrangement. The lower part of the bezel is freely rotatable to disguise the method of relamping by requiring correct manipulation of the upper bezel part to allow release and removal of the bezel arrangement. A continuously adjustable ball and socket arrangement permits varying the orientation of the light over a wide range such as a 25 degree spherical zone. A simplified locking mechanism may be engaged in any position without tools, to prevent adjustment by passengers. When the locking mechanism is disengaged, enough friction is provided to maintain the orientation despite environment vibration.
    Type: Grant
    Filed: January 15, 1992
    Date of Patent: December 27, 1994
    Assignee: Gulton Industries, Inc.
    Inventor: Alex Yoon