Patents by Inventor Alex Yusim

Alex Yusim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220294177
    Abstract: A CPA ultrashort pulse laser system is configured with a beam splitter dividing each ultrashort pulse from a seed laser into at least two replicas which propagate along respective replica paths. Each replica path includes an upstream dispersive element stretching respective replicas to different pulse durations. The optical switches are located in respective replica paths upstream or downstream from upstream dispersive elements. Each optical switch is individually controllable to operate at a high switching speed between “on” and “off” positions so as to selectively block one of the replicas or temporally separate the replicas at the output of the switching assembly. The replicas are so stretched that a train of high peak power ultrashort pulses each are output with a pulse duration selected from a fs ns range and peak power of up to a MW level.
    Type: Application
    Filed: July 9, 2020
    Publication date: September 15, 2022
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Alex YUSIM, David CLARK, Igor SAMARTSEV, Joe ANTAS, Justin BARSALOU
  • Patent number: 11444425
    Abstract: The ultra-short pulse chirped pulse amplification (CPA) laser system and method of operating CPA laser system include outputting nearly transform limited (TL) pulses by a mode locked laser. The system and method further include temporarily stretching the TL pulses by a first Bragg grating providing thus each stretched pulse with a chirp which is further compensated for in a second Bragg grating operating as as a compressor. The laser system and method further include a pulse shaping unit measuring a spectral phase across the recompressed pulse and further adjusting the deviation of the measured spectral phase from that of the TL pulse by generating a corrective signal. The corrective signal is applied to the array of actuators coupled to respective segments of one of the BGs which are selectively actuated to induce the desired phase change, with the one BG thus operating as both stretcher/compressor and pulse shaper.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: September 13, 2022
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alex Yusim, Bruce Jenket, Anton Drozhzhin, George Venus, Igor Samartsev, Dmitry Pestov, Anton Ryabtsev
  • Publication number: 20220149579
    Abstract: A laser system and method. In one example, the laser system includes an optical pulse stretcher configured to stretch pulse durations of an input train of input pulses to produce a train of stretched laser pulses, a pulse replicator module configured to increase a pulse repetition rate of the train of stretched laser pulses to produce a modified pulse train of laser light, a fiber power amplifier configured to amplify the modified pulse train to produce amplified laser pulses, and a pulse compressor that temporally compresses the amplified laser pulses to produce amplified and compressed laser pulses. The system may further include a nonlinear frequency conversion stage comprising at least one nonlinear crystal.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 12, 2022
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Alex YUSIM, Igor SAMARTSEV, Manuel J. LEONARDO, Vadim SMIRNOV, Pankaj KADWANI, Alexey AVDOKHIN, Andreas VAUPEL
  • Patent number: 11095089
    Abstract: The ultrafast pulse fiber laser system is configured with scalable output power and operative to reduce degradation of pulse integrity. The disclosed laser system is configured to suppress the pulse distortion through improvement of initial pulse contrast between main and side pulses and improved pulse shape using chirped pulse amplification and a fast intensity modulator driver by a corrected electrical signal that is generated from the original optical signal. The structure providing the improvement includes the photodiode, which is operative to measure the chirped optical pulse and convert it to the electrical signal, and analog electronics that quickly converts the electrical signal to the required signal that suppress the side pulses.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 17, 2021
    Inventors: Alex Yusim, Igor Samartsev, Oleg Shkurihkin
  • Publication number: 20200303893
    Abstract: The ultrafast pulse fiber laser system is configured with scalable output power and operative to reduce degradation of pulse integrity. The disclosed laser system is configured to suppress the pulse distortion through improvement of initial pulse contrast between main and side pulses and improved pulse shape using chirped pulse amplification and a fast intensity modulator driver by a corrected electrical signal that is generated from the original optical signal. The structure providing the improvement includes the photodiode, which is operative to measure the chirped optical pulse and convert it to the electrical signal, and analog electronics that quickly converts the electrical signal to the required signal that suppress the side pulses.
    Type: Application
    Filed: March 29, 2017
    Publication date: September 24, 2020
    Inventors: Alex YUSIM, Igor SAMARTSEV, Oleg SHKURIHKIN
  • Publication number: 20200127430
    Abstract: The ultra-short pulse chirped pulse amplification (CPA) laser system and method of operating CPA laser system include outputting nearly transform limited (TL) pulses by a mode locked laser. The system and method further include temporarily stretching the TL pulses by a first Bragg grating providing thus each stretched pulse with a chirp which is further compensated for in a second Bragg grating operating as as a compressor. The laser system and method further include a pulse shaping unit measuring a spectral phase across the recompressed pulse and further adjusting the deviation of the measured spectral phase from that of the TL pulse by generating a corrective signal. The corrective signal is applied to the array of actuators coupled to respective segments of one of the BGs which are selectively actuated to induce the desired phase change, with the one BG thus operating as both stretcher/compressor and pulse shaper.
    Type: Application
    Filed: March 29, 2018
    Publication date: April 23, 2020
    Inventors: Alex YUSIM, Bruce JENKET, Anton DROZHZHIN, George VENUS, Igor SAMARTSEV, Dmitry PESTOV, Anton RYABTSEV
  • Patent number: 9395612
    Abstract: A laser illuminated projector system is configured with multiple Red, Green and Blue laser sources. The Green laser source has an all fiber master oscillator power amplifier configuration in which pump light is coupled into the output end of the fiber amplifier in a counter-propagation direction rendering the structure of the Green source and therefore projector system compact. The Green laser source is operative to emit signal light pulses at about 1064 nm wavelength with a pulse repetition reaching of up to about 3000 kHz, pulse duration between about a 100 fm to about 100 psec, an average power between 1.5 W to above 30 W, a peak power above 5 MW, a pulse energy exceeding 100 ?J and a beam quality parameter M2 ranging between 1.2 and 1.5. The thus configured Green laser source substantially reduces speckle otherwise visible on the laser illuminated screen.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: July 19, 2016
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Igor Samartsev, Alex Yusim
  • Publication number: 20150219986
    Abstract: A laser illuminated projector system is configured with multiple Red, Green and Blue laser sources. The Green laser source has an all fiber master oscillator power amplifier configuration in which pump light is coupled into the output end of the fiber amplifier in a counter-propagation direction rendering the structure of the Green source and therefore projector system compact. The Green laser source is operative to emit signal light pulses at about 1064 nm wavelength with a pulse repetition reaching of up to about 3000 kHz, pulse duration between about a 100 fm to about 100 psec, an average power between 1.5 W to above 30 W, a peak power above 5 MW, a pulse energy exceeding 100 ?J and a beam quality parameter M2 ranging between 1.2 and 1.5. The thus configured Green laser source substantially reduces speckle otherwise visible on the laser illuminated screen.
    Type: Application
    Filed: March 6, 2014
    Publication date: August 6, 2015
    Applicant: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Igor Samartsev, Alex Yusim
  • Patent number: 9077150
    Abstract: A high power fiber laser system consisting of multiple fiber amplifier or laser systems amplifying the input signal in parallel is configured with a high power splitter such as to share some of the gain stages. The high power splitting component consists of high power fiber couplers and splitter(s). The splitter is a holographic optical element, a dielectric coated plate, a diffraction grating, or a volume Bragg grating. The resultant fiber laser configuration reduces the total number of amplifying stages including optical isolators and active fiber assemblies for the system and thus reduces the total volume and weight.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: July 7, 2015
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alex Yusim, Roman Yagodkin
  • Publication number: 20150043597
    Abstract: A high power fiber laser system consisting of multiple fiber amplifier or laser systems amplifying the input signal in parallel is configured with a high power splitter such as to share some of the gain stages. The high power splitting component consists of high power fiber couplers and splitter(s). The splitter is a holographic optical element, a dielectric coated plate, a diffraction grating, or a volume Bragg grating. The resultant fiber laser configuration reduces the total number of amplifying stages including optical isolators and active fiber assemblies for the system and thus reduces the total volume and weight.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: IPG Photonics Corporation
    Inventors: Alex Yusim, Roman Yagodkin
  • Patent number: 8849078
    Abstract: A high power (HP) fiber circulator is configured with a case enclosing a plurality of optical components which are arranged so as to define multiple ports. The fiber circulator further includes a plurality of launching and receiving fiber components each of which has spliced delivery and pigtailed passive fibers selectively coupling a HP input signal into and receiving a HP output signal from respective input and output ports. The passive fibers of each fiber component have respective protective coatings spaced from one another and each covering the cladding of the fibers. A light stripper, extending between the protective coatings, is operative to substantially remove cladding-supported light from one of the passive fibers before it reaches the protective coating of the other passive fiber.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: September 30, 2014
    Assignee: IPG Photonics Corporation
    Inventors: Dmitry Starodubov, Hongbo Yu, Alex Yusim
  • Publication number: 20140086526
    Abstract: A high power (HP) fiber circulator is configured with a case enclosing a plurality of optical components which are arranged so as to define multiple ports. The fiber circulator further includes a plurality of launching and receiving fiber components each of which has spliced delivery and pigtailed passive fibers selectively coupling a HP input signal into and receiving a HP output signal from respective input and output ports. The passive fibers of each fiber component have respective protective coatings spaced from one another and each covering the cladding of the fibers. A light stripper, extending between the protective coatings, is operative to substantially remove cladding-supported light from one of the passive fibers before it reaches the protective coating of the other passive fiber.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventors: Dmitry Starodubov, Hongbo Yu, Alex Yusim
  • Patent number: 8320415
    Abstract: A high power (HP) fiber circulator is configured with a case enclosing a plurality of optical components which are arranged so as to define multiple ports. The fiber circulator further includes a plurality of launching and receiving fiber components each of which has spliced delivery and pigtailed passive fibers selectively coupling a HP input signal into and receiving a HP output signal from respective input and output ports. The passive fibers of each fiber component have respective protective coatings spaced from one another and each covering the cladding of the fibers. A light stripper, extending between the protective coatings, is operative to substantially remove cladding-supported light from one of the passive fibers before it reaches the protective coating of the other passive fiber.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 27, 2012
    Assignee: IPG Photonics Corporation
    Inventors: Dmitry Starodubov, Alex Yusim, Hongbo Yu
  • Publication number: 20110044358
    Abstract: A high power (HP) fiber circulator is configured with a case enclosing a plurality of optical components which are arranged so as to define multiple ports. The fiber circulator further includes a plurality of launching and receiving fiber components each of which has spliced delivery and pigtailed passive fibers selectively coupling a HP input signal into and receiving a HP output signal from respective input and output ports. The passive fibers of each fiber component have respective protective coatings spaced from one another and each covering the cladding of the fibers. A light stripper, extending between the protective coatings, is operative to substantially remove cladding-supported light from one of the passive fibers before it reaches the protective coating of the other passive fiber.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 24, 2011
    Applicant: IPG Photonics Corporation
    Inventors: Dmitry Starodubov, Hongbo Yu, Alex Yusim
  • Publication number: 20100061410
    Abstract: An optical system includes a launching component radiating a beam of light at a fixed power, a specialty component, which receives the beam and is configured with a transverse mode field diameter different from that one of the launching component, and a focusing component substantially losslessly coupled to the launching and receiving components. The focusing component is configured so that the effective area of mode at the input of the receiving component determines the intensity of light inducing at least one nonlinear effect at the desired threshold.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Inventors: Nikolai Platonov, Alex Yusim, Oleg Shkurikhin, Anton Drozhzhin
  • Patent number: 7580600
    Abstract: A waveguide receiving light which propagates through free space is configured with a coupler and delivery fiber. The coupler, including a GREEN or multimode fiber, has a protective coating and so does the delivery fiber. Upon splicing of the coupler to the delivery fiber, the protective coatings of the respective coupler and delivery fiber are spaced apart exposing thus end regions of the respective coupler and fiber. The exposed regions are covered by a light stripper made of material having a refractive index which is substantially the same as or greater than that one of outer claddings. Accordingly, the light stripper minimizes the amount of light capable of coupling into the protective coatings of the respective delivery and coupler fibers enhancing thus a power handling capabilities of the waveguide.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: August 25, 2009
    Assignee: IPG Photonics Corporation
    Inventors: Dmitry Starodubov, Alex Yusim