Patents by Inventor Alexander Badmaev

Alexander Badmaev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955482
    Abstract: Integrated circuit structures having high phosphorous dopant concentrations are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each of the epitaxial structures of the first and second source or drain structures includes silicon and phosphorous, the phosphorous having an atomic concentration in a core region of the silicon greater than an atomic concentration in a peripheral region of the silicon.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Robert Ehlert, Timothy Jen, Alexander Badmaev, Shridhar Hegde, Sandrine Charue-Bakker
  • Publication number: 20210358908
    Abstract: Integrated circuit structures having high phosphorous dopant concentrations are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion. A gate stack is over the upper fin portion of the fin, the gate stack having a first side opposite a second side. A first source or drain structure includes an epitaxial structure embedded in the fin at the first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at the second side of the gate stack. Each of the epitaxial structures of the first and second source or drain structures includes silicon and phosphorous, the phosphorous having an atomic concentration in a core region of the silicon greater than an atomic concentration in a peripheral region of the silicon.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 18, 2021
    Inventors: Robert EHLERT, Timothy JEN, Alexander BADMAEV, Shridhar HEGDE, Sandrine CHARUE-BAKKER
  • Publication number: 20200194577
    Abstract: An HEMT semiconductor structure is disclosed. The semiconductor structure includes a substrate, a GaN layer above the substrate, a first TDD reducing structure above the substrate and a polarization layer above the GaN layer.
    Type: Application
    Filed: December 13, 2018
    Publication date: June 18, 2020
    Inventors: Glenn GLASS, Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Paul FISCHER, Anand MURTHY, Alexander BADMAEV, Michael S. BEUMER, Sandrine CHARUE-BAKKER
  • Patent number: 8860137
    Abstract: RF transistors are fabricated at complete wafer scale using a nanotube deposition technique capable of forming high-density, uniform semiconducting nanotube thin films at complete wafer scale, and electrical characterization reveals that such devices exhibit gigahertz operation, linearity, and large transconductance and current drive.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 14, 2014
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang
  • Patent number: 8778716
    Abstract: Techniques, apparatus and systems are described for wafer-scale processing of aligned nanotube devices and integrated circuits. In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate. The method can include transferring the grown aligned nanotubes onto a target substrate. Also, the method can include fabricating at least one device based on the transferred nanotubes.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: July 15, 2014
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang
  • Patent number: 8692230
    Abstract: A high performance field-effect transistor includes a substrate, a nanomaterial thin film disposed on the substrate, a source electrode and a drain electrode formed on the nanomaterial thin film, and a channel area defined between the source electrode and the drain electrode. A unitary self-aligned gate electrode extends from the nanomaterial thin film in the channel area between the source electrode and the drain electrode, the gate electrode having an outer dielectric layer and including a foot region and a head region, the foot region in contact with a portion of the nanomaterial thin film in the channel area. A metal layer is disposed over the source electrode, the drain electrode, the head region of the gate electrode, and portions of the nanomaterial thin film proximate the source electrode and the drain electrode in the channel area.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 8, 2014
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Alexander Badmaev, Chuan Wang, Yuchi Che
  • Patent number: 8618612
    Abstract: Techniques, apparatus and systems are described for wafer-scale processing of aligned nanotube devices and integrated circuits. In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate. The method can include transferring the grown aligned nanotubes onto a target substrate. Also, the method can include fabricating at least one device based on the transferred nanotubes.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 31, 2013
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang
  • Publication number: 20130119348
    Abstract: RF transistors are fabricated at complete wafer scale using a nanotube deposition technique capable of forming high-density, uniform semiconducting nanotube thin films at complete wafer scale, and electrical characterization reveals that such devices exhibit gigahertz operation, linearity, and large transconductance and current drive.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 16, 2013
    Inventors: Chongwu Zhou, Alexander Badmaev, Chuan Wang
  • Patent number: 8354291
    Abstract: Techniques, apparatus and systems are described for wafer-scale processing of aligned nanotube devices and integrated circuits. In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate. The method can include transferring the grown aligned nanotubes onto a target substrate. Also, the method can include fabricating at least one device based on the transferred nanotubes.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang
  • Publication number: 20120261646
    Abstract: Techniques, apparatus and systems are described for wafer-scale processing of aligned nanotube devices and integrated circuits one. In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate. The method can include transferring the grown aligned nanotubes onto a target substrate. Also, the method can include fabricating at least one device based on the transferred nanotubes.
    Type: Application
    Filed: April 13, 2012
    Publication date: October 18, 2012
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang
  • Publication number: 20120248416
    Abstract: A high performance field-effect transistor includes a substrate, a nanomaterial thin film disposed on the substrate, a source electrode and a drain electrode formed on the nanomaterial thin film, and a channel area defined between the source electrode and the drain electrode. A unitary self-aligned gate electrode extends from the nanomaterial thin film in the channel area between the source electrode and the drain electrode, the gate electrode having an outer dielectric layer and including a foot region and a head region, the foot region in contact with a portion of the nanomaterial thin film in the channel area. A metal layer is disposed over the source electrode, the drain electrode, the head region of the gate electrode, and portions of the nanomaterial thin film proximate the source electrode and the drain electrode in the channel area.
    Type: Application
    Filed: March 26, 2012
    Publication date: October 4, 2012
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Alexander Badmaev, Chuan Wang, Yuchi Che
  • Publication number: 20110101302
    Abstract: Methods, materials, systems and apparatus are described for depositing a separated nanotube networks, and fabricating, separated nanotube thin-film transistors and N-type separated nanotube thin-film transistors. In one aspect, a method of depositing a wafer-scale separated nanotube networks includes providing a substrate with a dielectric layer. The method includes cleaning a surface of the wafer substrate to cause the surface to become hydrophilic. The cleaned surface of the wafer substrate is functionalized by applying a solution that includes linker molecules terminated with amine groups. High density, uniform separated nanotubes are assembled over the functionalized surface by applying to the functionalized surface a separated nanotube solution that includes semiconducting nanotubes.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 5, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Chuan Wang, Jialu Zhang, Koungmin Ryu, Alexander Badmaev, Lewis Gomez De Arco
  • Publication number: 20100133511
    Abstract: Techniques, apparatus and systems are described for wafer-scale processing of aligned nanotube devices and integrated circuits. In one aspect, a method can include growing aligned nanotubes on at least one of a wafer-scale quartz substrate or a wafer-scale sapphire substrate. The method can include transferring the grown aligned nanotubes onto a target substrate. Also, the method can include fabricating at least one device based on the transferred nanotubes.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Inventors: Chongwu Zhou, Koungmin Ryu, Alexander Badmaev, Chuan Wang