Patents by Inventor Alexander Baumgartner

Alexander Baumgartner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11685302
    Abstract: A truck-mountable detection system for detection of a first coupling device of a container, in which the first coupling device is configured for coupling with a second coupling device of a truck-mounted loading equipment, in particular a hook of a hookloader. The detection system includes a data processor and an data capturing device, the data of which can be sent to the data processor. The data capturing device is a stereographic sensor system, and the data processor is configured to automatically recognize the shape of the first coupling device of the container based on the data provided by the stereographic sensor system.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: June 27, 2023
    Assignee: GUIMA PALFINGER S.A.S.
    Inventors: Michel Raucoulles, Guillaume Bourdais, Mario Roither, Alexander Baumgartner
  • Patent number: 11588076
    Abstract: A radiation-emitting optoelectronic component may include a semiconductor chip or a semiconductor laser which, in operation of the component, emits a primary radiation in the UV region or in the blue region of the electromagnetic spectrum. The optoelectronic component may further include a conversion element comprising a first phosphor configured to convert the primary radiation at least partly to a first secondary radiation having a peak wavelength in the green region of the electromagnetic spectrum between 475 nm and 500 nm inclusive. The first phosphor may be or include BaSi4Al3N9, SrSiAl2O3N2, BaSi2N2O2, ALi3XO4, M*(1?x*?y*?z*) Z*z*[A*a*B*b*C*c*D*d*E*e*N4-n*On*], and combinations thereof.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: February 21, 2023
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ion Stoll, Alexander Baumgartner, Alexander Wilm
  • Patent number: 11322662
    Abstract: The optoelectronic device including a radiation emitting semiconductor chip emitting electromagnetic radiation of a first wavelength range from a radiation exit surface, and a conversion element converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of a second wavelength range at least partially and emitting electromagnetic radiation from a light coupling-out surface, wherein the light coupling-out surface of the conversion element is smaller than the radiation exit surface of the semiconductor chip.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: May 3, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Martin Brandl, Alexander Baumgartner, Ion Stoll
  • Patent number: 11292965
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes Sr(SraCa1-a)Si2Al2N6:Eu, wherein x is 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein the parameter value a is between 0.6 and 1.0 inclusive, wherein the phosphor has a structure comprising (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20220059741
    Abstract: In an embodiment a radiation emitting device includes a semiconductor chip configured to emit electromagnetic radiation of a first wavelength range from a radiation exit surface and a potting comprising a matrix material and a plurality of nanoparticles, wherein a concentration of the nanoparticles in the matrix material decreases starting from the radiation exit surface of the semiconductor chip so that a refractive index of the potting decreases starting from the radiation exit surface of the semiconductor chip, and wherein the nanoparticles are coated with a shell.
    Type: Application
    Filed: December 18, 2019
    Publication date: February 24, 2022
    Inventors: Alexander Baumgartner, T'ing Qi'ao Leow, Tomin Liu, Kathy Schmidtke
  • Publication number: 20210351329
    Abstract: A radiation-emitting component may include a first semiconductor chip to emit blue light, a second semiconductor chip to emit cyan-colored light, and a conversion element to emit secondary radiation. The conversion element may be arranged downstream of the first semiconductor chip and the second semiconductor chip. The conversion element emits the secondary radiation under excitation with the blue light of the first semiconductor chip, and the secondary radiation mixes with the blue light to form warm white light.
    Type: Application
    Filed: September 17, 2019
    Publication date: November 11, 2021
    Inventors: Sebastian Stoll, Alexander Baumgartner
  • Publication number: 20210184082
    Abstract: A radiation-emitting optoelectronic component may include a semiconductor chip or a semiconductor laser which, in operation of the component, emits a primary radiation in the UV region or in the blue region of the electromagnetic spectrum. The optoelectronic component may further include a conversion element comprising a first phosphor configured to convert the primary radiation at least partly to a first secondary radiation having a peak wavelength in the green region of the electromagnetic spectrum between 475 nm and 500 nm inclusive. The first phosphor may be or include BaSi4Al3N9, SrSiAl2O3N2, BaSi2N2O2, ALi3XO4, M*(1-x*-y*-z*)Z*z*[A*a*B*b*C*c*D*d*E*e*N4-n*On*], and combinations thereof.
    Type: Application
    Filed: April 17, 2018
    Publication date: June 17, 2021
    Inventors: Ion STOLL, Alexander BAUMGARTNER, Alexander WILM
  • Patent number: 10868223
    Abstract: An optoelectronic component includes a semiconductor chip that emits primary radiation from the blue spectral region, a conversion element including at least three phosphors each converting the primary radiation into secondary radiation, wherein the first phosphor emits secondary radiation from the green spectral region, the second phosphor emits secondary radiation from the red spectral region, the third phosphor is a potassium-silicon-fluoride phosphor that emits secondary radiation from the red spectral region, and the component has an Ra value of at least 80 and an R9 value of at least 75, and emits white mixed radiation.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: December 15, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Rainer Butendeich, Alexander Baumgartner
  • Publication number: 20200291294
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes SrxCa1?xAlSiN3:Eu, wherein x is: 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein, in a x-ray structure analysis, the phosphor in orthorhombic description exhibits a reflection (R) having Miller indices 1 2 1, wherein the phosphor has a structure including (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Roemer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Boenisch, Hailing Cui
  • Publication number: 20200290496
    Abstract: A truck-mountable detection system for detection of a first coupling device of a container, in which the first coupling device is configured for coupling with a second coupling device of a truck-mounted loading equipment, in particular a hook of a hookloader. The detection system includes a data processor and an data capturing device, the data of which can be sent to the data processor. The data capturing device is a stereographic sensor system, and the data processor is configured to automatically recognize the shape of the first coupling device of the container based on the data provided by the stereographic sensor system.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Michel RAUCOULLES, Guillaume BOURDAIS, Mario ROITHER, Alexander BAUMGARTNER
  • Patent number: 10711191
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 14, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20190341532
    Abstract: The optoelectronic device including a radiation emitting semiconductor chip emitting electromagnetic radiation of a first wavelength range from a radiation exit surface, and a conversion element converting electromagnetic radiation of the first wavelength range into electromagnetic radiation of a second wavelength range at least partially and emitting electromagnetic radiation from a light coupling-out surface, wherein the light coupling-out surface of the conversion element is smaller than the radiation exit surface of the semiconductor chip.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 7, 2019
    Inventors: Martin Brandl, Alexander Baumgartner, Ion Stoll
  • Publication number: 20190229244
    Abstract: An optoelectronic component includes a semiconductor chip that emits primary radiation from the blue spectral region, a conversion element including at least three phosphors each converting the primary radiation into secondary radiation, wherein the first phosphor emits secondary radiation from the green spectral region, the second phosphor emits secondary radiation from the red spectral region, the third phosphor is a potassium-silicon-fluoride phosphor that emits secondary radiation from the red spectral region, and the component has an Ra value of at least 80 and an R9 value of at least 75, and emits white mixed radiation.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 25, 2019
    Inventors: Rainer Butendeich, Alexander Baumgartner
  • Publication number: 20170306224
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9725646
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 8, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9719013
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 1, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9719014
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: August 1, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9590151
    Abstract: A method is provided for producing a plurality of radiation-emitting semiconductor chips, having the following steps: providing a plurality of semiconductor bodies (1) which are suitable for emitting electromagnetic radiation from a radiation exit face (3), applying the semiconductor bodies (1) to a carrier (2), applying a first mask layer (4) to regions of the carrier (2) between the semiconductor bodies (1), applying a conversion layer (5) to the entire surface of the semiconductor bodies (1) and the first mask layer (4) using a spray coating method, and removing the first mask layer (4), such that in each case a conversion layer (5) arises on the radiation exit faces (3) of the semiconductor bodies (1).
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 7, 2017
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Markus Richter, Alexander Baumgartner, Hans-Christoph Gallmeier, Tony Albrecht
  • Publication number: 20170058195
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 2, 2017
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20160326430
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui