Patents by Inventor Alexander Bietsch

Alexander Bietsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867968
    Abstract: The device (10) comprises a first member (1) and a second member (2) which are stacked upon each other in a direction vertical direction. The first and second members comprise a central portion (C1; C2) each, and the first member (1) comprises at least a first distancing element (4) abutting the second member (2). The device (10) comprises a gap zone (G) and a bonding material (3), wherein the gap zone is peripheral to the central portions (C1; C2), and in the gap zone (G), a gap (5) is present between the first and second members. A portion of the gap (5) is filled by the bonding material (3) bonding the first and second members to each other in a bonding zone (B) comprised in the gap zone. A height (h) of the gap (5) is defined by the first distancing element (4).
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: January 9, 2024
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Hartmut Rudmann, Alexander Bietsch
  • Publication number: 20220190186
    Abstract: We disclose an optoelectronic module comprising an optoelectronic device operable to emit or detect a wavelength of radiation, an optical element arranged on the optoelectronic device, the optical element being transparent to the wavelength of radiation capable of being emitted or detected by the optoelectronic device, and a wall configured to laterally enclose the optoelectronic device and the optical element, the wall being opaque to the wavelength of radiation capable of being emitted or detected by the optoelectronic device.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 16, 2022
    Inventors: Bojan Tesanovic, Ji Wang, QiChuan Yu, Alexander Bietsch
  • Publication number: 20220040941
    Abstract: A method of manufacturing a plurality of optical elements comprising the steps of providing a substrate (120) providing a tool (100) comprising, a plurality of replication sections (106) each defining a surface structure of one of the optical elements, and at least one contact spacer portion (112), aligning the tool (100) and the substrate (120) with respect to each other and bringing the tool (100) and a first side of the substrate (120) together, with replication material (124) between the tool (100) and the substrate (120), the contact spacer portion (112) contacting the first side of the substrate (120), hardening the replication material (124), and separating the tool (100) from the substrate (120) with the hardened replication material adhering to the substrate (120), wherein the tool (100) has yard line features (304) around at least a portion of the replication sections (106), the yard line features (304) configured to contain the replication material (124) on a first side of the yard line with respec
    Type: Application
    Filed: December 17, 2019
    Publication date: February 10, 2022
    Inventors: Sonja Gantner, Tobias Senn, Robert Lenart, Alexander Bietsch
  • Publication number: 20200271886
    Abstract: The device (10) comprises a first member (1) and a second member (2) which are stacked upon each other in a direction vertical direction. The first and second members comprise a central portion (C1; C2) each, and the first member (1) comprises at least a first distancing element (4) abutting the second member (2). The device (10) comprises a gap zone (G) and a bonding material (3), wherein the gap zone is peripheral to the central portions (C1; C2), and in the gap zone (G), a gap (5) is present between the first and second members. A portion of the gap (5) is filled by the bonding material (3) bonding the first and second members to each other in a bonding zone (B) comprised in the gap zone. A height (h) of the gap (5) is defined by the first distancing element (4).
    Type: Application
    Filed: August 16, 2018
    Publication date: August 27, 2020
    Inventors: Hartmut Rudmann, Alexander Bietsch
  • Patent number: 10741613
    Abstract: The present disclosure describes optical element stack assemblies that include multiple substrates stacked one over another. At least one of the substrates includes an optical element, such as a DOE, on its surface. The stack assemblies can be fabricated, for example, in wafer-level processes.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 11, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Stephan Heimgartner, Alexander Bietsch, Peter Riel
  • Patent number: 10682824
    Abstract: The wafer-level method for applying N?2 first elements to a first side of a substrate, wherein the substrate has at the first side a first surface including the steps of providing the substrate, wherein at least N barrier members are present at the first side, and wherein each barrier member is associated with one of the first elements. For each of the first elements, the method includes bringing a first amount of a hardenable material in a flowable state in contact with the first surface, the first amount of hardenable material being associated with the first element; controlling a flow of the first amount of hardenable material on the first surface with the associated barrier member; and hardening the first amount of hardenable material to interconnect the first surface and the respective element.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: June 16, 2020
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Alexander Bietsch, Michel Barge
  • Patent number: 10444477
    Abstract: The wafer stack (100) comprises a first wafer (OW1) referred to as optics wafer and a second wafer (SW) referred to as spacer wafer, said optics wafer (OW1) having manufacturing irregularities. The spacer wafer (SW) is structured such that it at least partially compensates for said manufacturing irregularities. The corresponding method for manufacturing a device, which in particular can be an optical device, comprises carrying out a correction step for at least partially compensating for manufacturing irregularities. Such a correction step comprises providing a wafer (SW) referred to as spacer wafer, wherein that spacer wafer is structured for at least partially compensating for said manufacturing irregularities. Those manufacturing irregularities may comprise a deviation from a nominal value, e.g., a irregularities in focal length. The invention can allow to mass produce high-precision devices at a high yield.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 15, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Hartmut Rudmann, Matthias Maluck, Alexander Bietsch, Peter Roentgen, Stephan Heimgartner
  • Patent number: 10379262
    Abstract: A replication tool for producing an optical structure comprising an optical element includes a central section having the shape defining a negative of a portion of the optical structure and a vertically aligned central axis; a surrounding section laterally surrounding the central section; and one or more contact standoffs defining a plane referred to as contact plane. In a first azimuthal range, the surrounding portion provides a first compensation surface facing away from the central axis, and in a second azimuthal range, the surrounding portion provides a second compensation surface facing away from the central axis. In any cross-section containing the central axis in the second azimuthal range, a steepness of the second compensation surface is higher than a steepness of the first compensation surface in any cross-section containing the central axis in the first azimuthal range.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: August 13, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Alexander Bietsch, Michel Barge
  • Patent number: 10373996
    Abstract: Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 6, 2019
    Assignee: ams Sensors Singapore Pte. Ltd
    Inventors: Stephan Heimgartner, Ville Kettunen, Nicola Spring, Alexander Bietsch, Mario Cesana, Hartmut Rudmann, Jukka Alasirnio, Robert Lenart
  • Patent number: 10236314
    Abstract: The optical device comprises a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion. The device furthermore comprises non-transparent material applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 19, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Markus Rossi, Hartmut Rudmann, Stephan Heimgartner, Alexander Bietsch, Robert Lenart
  • Patent number: 10215909
    Abstract: The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: February 26, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Simon Gubser, Frank Sobel, Alexander Bietsch, Jens Geiger
  • Patent number: 10204945
    Abstract: Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: February 12, 2019
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Jukka Alasirniö, Bojan Tesanovic, Tobias Senn, Devanraj Kupusamy, Alexander Bietsch
  • Publication number: 20180372943
    Abstract: The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 27, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Simon Gubser, Frank Sobel, Alexander Bietsch, Jens Geiger
  • Patent number: 10096644
    Abstract: A method for manufacturing one or more optical devices, each comprising a first member and a second member, and a spacer arranged between the first and second members. The method includes manufacturing a spacer wafer including a multitude of the spacers. Manufacturing the spacer wafer includes providing a replication tool having spacer replication sections; bringing the replication tool in contact with a first surface of another wafer; bringing a vacuum sealing chuck into contact with a second surface of the other wafer while the other wafer remains in contact with the replication tool; and injecting a liquid, viscous or plastically deformable material through an inlet of the vacuum sealing chuck so as to substantially fill the spacer replication sections.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: October 9, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Alexander Bietsch, Hartmut Rudmann, Markus Rossi, Simon Gubser
  • Patent number: 10007052
    Abstract: The waveguide structure can be manufactured on wafer-scale and comprises a holding structure and a first and a second waveguides each having a core and two end faces. The holding structure comprises a separation structure being arranged between the first and the second waveguide and provides an optical separation between the first and the second waveguide in a region between the end faces of the first and second waveguides. A method for manufacturing such a waveguide structure with at least one waveguide comprises shaping replication material by means of tool structures to obtain the end faces, hardening the replication material and removing the tool structures from a waveguide structures wafer comprising a plurality of so-obtained waveguides.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: June 26, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Simon Gubser, Frank Sobel, Alexander Bietsch, Jens Geiger
  • Publication number: 20180138222
    Abstract: Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
    Type: Application
    Filed: December 21, 2017
    Publication date: May 17, 2018
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Jukka Alasirniö, Bojan Tesanovic, Tobias Senn, Devanraj Kupusamy, Alexander Bietsch
  • Patent number: 9887221
    Abstract: Optical modules are made using customizable spacers to reduce variations in the focal lengths of the optical channels, to reduce the occurrence of tilt of the optical channels, and/or prevent adhesive from migrating to active portions of an image sensor.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: February 6, 2018
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Jukka Alasirniö, Bojan Tesanovic, Tobias Senn, Devanraj Kupusamy, Alexander Bietsch
  • Publication number: 20170317126
    Abstract: Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Ville Kettunen, Nicola Spring, Alexander Bietsch, Mario Cesana, Hartmut Rudmann, Jukka Alasirnio, Robert Lenart
  • Publication number: 20170309685
    Abstract: The present disclosure describes optical element stack assemblies that include multiple substrates stacked one over another. At least one of the substrates includes an optical element, such as a DOE, on its surface. The stack assemblies can be fabricated, for example, in wafer-level processes.
    Type: Application
    Filed: October 14, 2015
    Publication date: October 26, 2017
    Inventors: Stephan Heimgartner, Alexander Bietsch, Peter Riel
  • Patent number: 9746349
    Abstract: An opto-electronic sensor module (e.g., an optical proximity sensor module) includes a substrate, a light emitter mounted on a first surface of the substrate, the light emitter being operable to emit light at a first wavelength, and a light detector mounted on the first surface of the substrate, the light detector being operable to detect light at the first wavelength. The module includes an optics member disposed substantially parallel to the substrate, and a separation member disposed between the substrate and the optics member. The separation member may surround the light emitter and the light detector, and may include a wall portion that extends from the substrate to the optics member and that separates the light emitter and the light detector from one another.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: August 29, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Alexander Bietsch, Susanne Westenhöfer, Simon Gubser, Samuele Laffranchini