Patents by Inventor Alexander BINTER

Alexander BINTER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330769
    Abstract: Provided is a machining apparatus including a profile sensor unit configured to obtain shape information about a parent substrate; and a laser scan unit configured to direct a laser beam onto the parent substrate, wherein a laser beam axis of the laser beam is tilted to an exposed main surface of the parent substrate, and wherein a track of the laser beam on the parent substrate is controllable as a function of the shape information obtained from the profile sensor unit.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Inventors: Ralf Rieske, Alexander Binter, Wolfgang Diewald, Bernhard Goller, Heimo Graf, Gerald Lackner, Jan Richter, Roland Rupp, Guenter Schagerl, Marko David Swoboda
  • Patent number: 11712749
    Abstract: Provided is a parent substrate that includes a central region and an edge region. The edge region surrounds the central region. A detachment layer is formed in the central region. The detachment layer extends parallel to a main surface of the parent substrate. The detachment layer includes modified substrate material. A groove is formed in the edge region. The groove laterally encloses the central region. The groove runs vertically and/or tilted to the detachment layer.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: August 1, 2023
    Assignee: Infineon Technologies AG
    Inventors: Ralf Rieske, Alexander Binter, Wolfgang Diewald, Bernhard Goller, Heimo Graf, Gerald Lackner, Jan Richter, Roland Rupp, Guenter Schagerl, Marko Swoboda
  • Publication number: 20230127556
    Abstract: A method of processing a semiconductor wafer includes: forming one or more epitaxial layers over a first main surface of the semiconductor wafer; forming one or more porous layers in the semiconductor wafer or in the one or more epitaxial layers, wherein the semiconductor wafer, the one or more epitaxial layers and the one or more porous layers collectively form a substrate; forming doped regions of a semiconductor device in the one or more epitaxial layers; and after forming the doped regions of the semiconductor device, separating a non-porous part of the semiconductor wafer from a remainder of the substrate along the one or more porous layers.
    Type: Application
    Filed: May 12, 2022
    Publication date: April 27, 2023
    Inventors: Bernhard Goller, Alexander Binter, Tobias Hoechbauer, Martin Huber, Iris Moder, Matteo Piccin, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Publication number: 20220339740
    Abstract: A method of splitting a semiconductor work piece includes: forming a separation zone within the semiconductor work piece, wherein forming the separation zone comprises modifying semiconductor material of the semiconductor work piece at a plurality of targeted positions within the separation zone in at least one physical property which increases thermo-mechanical stress within the separation zone relative to a remainder of the semiconductor work piece, wherein modifying the semiconductor material in one of the targeted positions comprises focusing at least two laser beams to the targeted position; and applying an external force or stress to the semiconductor work piece such that at least one crack propagates along the separation zone and the semiconductor work piece splits into two separate pieces. Additional work piece splitting techniques and techniques for compensating work piece deformation that occurs during the splitting process are also described.
    Type: Application
    Filed: March 10, 2022
    Publication date: October 27, 2022
    Inventors: Benjamin Bernard, Alexander Binter, Heimo Graf
  • Publication number: 20210053148
    Abstract: Provided is a parent substrate that includes a central region and an edge region. The edge region surrounds the central region. A detachment layer is formed in the central region. The detachment layer extends parallel to a main surface of the parent substrate. The detachment layer includes modified substrate material. A groove is formed in the edge region. The groove laterally encloses the central region. The groove runs vertically and/or tilted to the detachment layer.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 25, 2021
    Inventors: Ralf Rieske, Alexander Binter, Wolfgang Diewald, Bernhard Goller, Heimo Graf, Gerald Lackner, Jan Richter, Roland Rupp, Guenter Schagerl, Marko Swoboda
  • Patent number: 10347491
    Abstract: Disclosed is a method. The method includes implanting recombination center particles into a semiconductor body via at least one contact hole in an insulation layer formed on top of the semiconductor body, forming a contact electrode electrically connected to the semiconductor body in the at least one contact hole, and annealing the semiconductor body to diffuse the recombination center particles in the semiconductor body. Forming the contact electrode includes forming a barrier layer on sections of the semiconductor body uncovered in the at least one contact hole, wherein the barrier layer is configured to inhibit the recombination center particles from diffusing out of the semiconductor body.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Wolfgang Jantscher, Alexander Binter, Oliver Blank, Petra Fischer, Ravi Keshav Joshi, Kurt Pekoll, Manfred Pippan, Andreas Riegler, Werner Schustereder, Juergen Steinbrenner, Waqas Mumtaz Syed
  • Patent number: 10199255
    Abstract: According to various embodiments, a workpiece planarization arrangement may include: a chuck including at least one portion configured to support one or more workpieces; and a planarization tool configured to planarize the at least one portion of the chuck and to planarize one or more workpieces on the at least one portion of the chuck; wherein the at least one portion of the chuck includes at least one of particles, pores and/or a polymer.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 5, 2019
    Assignee: Infineon Technologioes AG
    Inventors: Ingo Muri, Alexander Binter, Bernhard Goller, Christian Grindling
  • Publication number: 20180182629
    Abstract: Disclosed is a method. The method includes implanting recombination center particles into a semiconductor body via at least one contact hole in an insulation layer formed on top of the semiconductor body, forming a contact electrode electrically connected to the semiconductor body in the at least one contact hole, and annealing the semiconductor body to diffuse the recombination center particles in the semiconductor body. Forming the contact electrode includes forming a barrier layer on sections of the semiconductor body uncovered in the at least one contact hole, wherein the barrier layer is configured to inhibit the recombination center particles from diffusing out of the semiconductor body.
    Type: Application
    Filed: December 21, 2017
    Publication date: June 28, 2018
    Inventors: Wolfgang Jantscher, Alexander Binter, Oliver Blank, Petra Fischer, Ravi Keshav Joshi, Kurt Pekoll, Manfred Pippan, Andreas Riegler, Werner Schustereder, Juergen Steinbrenner, Waqas Mumtaz Syed
  • Patent number: 9862037
    Abstract: According to various embodiments, a workpiece planarization arrangement may include: a chuck including a support carrier; and a workpiece-support replaceably mounted on the support carrier; and a planarization tool configured to planarize the at least one portion of the workpiece-support and to planarize one or more workpieces on the at least one portion of the workpiece-support.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: January 9, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ingo Muri, Alexander Binter, Bernhard Goller, Christian Grindling
  • Publication number: 20170259354
    Abstract: According to various embodiments, a workpiece planarization arrangement may include: a chuck including a support carrier; and a workpiece-support replaceably mounted on the support carrier; and a planarization tool configured to planarize the at least one portion of the workpiece-support and to planarize one or more workpieces on the at least one portion of the workpiece-support.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 14, 2017
    Inventors: Ingo MURI, Alexander BINTER, Bernhard GOLLER, Christian GRINDLING
  • Publication number: 20170263490
    Abstract: According to various embodiments, a workpiece planarization arrangement may include: a chuck including at least one portion configured to support one or more workpieces; and a planarization tool configured to planarize the at least one portion of the chuck and to planarize one or more workpieces on the at least one portion of the chuck; wherein the at least one portion of the chuck includes at least one of particles, pores and/or a polymer.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 14, 2017
    Inventors: Ingo MURI, Alexander BINTER, Bernhard GOLLER, Christian GRINDLING