Patents by Inventor Alexander D. White

Alexander D. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11882371
    Abstract: A lens-less 3-D imaging device includes, in part, a multitude of optical receiving elements positioned along a concave or flat surface defining a focal zone of the imaging device. Each optical receiving element has a field of view that overlaps with a field of view of a number of other optical receiving elements. The optical receiving elements may optionally be grating couplers or photo detectors. The optical receiving elements may be disposed on a circuit board. The circuit board may be flexible and include control circuitry configured to form the image in accordance with the received responses of the optical receiving elements and further in accordance with the optical transfer functions of the of optical receiving elements. The circuit boards may include one or more flex sensors or strain gauges adapted to determine their curvatures.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 23, 2024
    Assignee: California Institute of Technology
    Inventors: Alexander D. White, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Patent number: 10948296
    Abstract: An optical gyroscope includes, in part, an optical switch, a pair of spiral optical rings and a pair of photodetectors. The optical switch supplies a laser beam. The first spiral optical ring delivers a first portion of the beam in a clockwise direction during the first half of a period, and a first portion of the beam in a counter clockwise direction during the second half of the period. The second spiral optical ring delivers a second portion of the beam in a counter clockwise direction during the first half of the period, and a second portion of the beam in a clockwise direction during the second half of the period. The first photodetector receives the beams delivered by the first and second optical rings during the first half of the period. The second photodetector receives the beams delivered by the first and second optical rings during the second half of the period.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: March 16, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Alexander D. White, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Patent number: 10727586
    Abstract: A communicate device includes transmitters and a receiver. The first transmitter is coupled to a first 90° phase shifter that is also coupled to a first antenna, and to a second 90° phase shifter that is also coupled to a first node. The second transmitter is coupled to a third 90° phase shifter that is also coupled to a second antenna, and to a fourth 90° phase shifter that is also coupled to the first node. The receiver is coupled to a fifth 90° phase shifter that is also coupled to the first antenna, and to a sixth 90° phase shifter that is also coupled to the second antenna. A non-reciprocal element, coupled between the receiver and the first node, provides a 90° phase shift from the receiver to the first node and a ?90° phase shift from the first node to the receiver.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 28, 2020
    Assignee: California Institute of Technology
    Inventors: Parham Porsandeh Khial, Seyed Mohammadreza Fatemi, Alexander D. White, Seyed Ali Hajimiri
  • Publication number: 20200099131
    Abstract: A communicate device includes transmitters and a receiver. The first transmitter is coupled to a first 90° phase shifter that is also coupled to a first antenna, and to a second 90° phase shifter that is also coupled to a first node. The second transmitter is coupled to a third 90° phase shifter that is also coupled to a second antenna, and to a fourth 90° phase shifter that is also coupled to the first node. The receiver is coupled to a fifth 90° phase shifter that is also coupled to the first antenna, and to a sixth 90° phase shifter that is also coupled to the second antenna. A non-reciprocal element, coupled between the receiver and the first node, provides a 90° phase shift from the receiver to the first node and a ?90° phase shift from the first node to the receiver.
    Type: Application
    Filed: July 17, 2019
    Publication date: March 26, 2020
    Inventors: Parham Porsandeh Khial, Seyed Mohammadreza Fatemi, Alexander D. White, Seyed Ali Hajimiri
  • Publication number: 20200041270
    Abstract: An optical gyroscope includes, in part, an optical switch, a pair of spiral optical rings and a pair of photodetectors. The optical switch supplies a laser beam. The first spiral optical ring delivers a first portion of the beam in a clockwise direction during the first half of a period, and a first portion of the beam in a counter clockwise direction during the second half of the period. The second spiral optical ring delivers a second portion of the beam in a counter clockwise direction during the first half of the period, and a second portion of the beam in a clockwise direction during the second half of the period. The first photodetector receives the beams delivered by the first and second optical rings during the first half of the period. The second photodetector receives the beams delivered by the first and second optical rings during the second half of the period.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Alexander D. White, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Publication number: 20190075282
    Abstract: A lens-less 3-D imaging device includes, in part, a multitude of optical receiving elements positioned along a concave or flat surface defining a focal zone of the imaging device. Each optical receiving element has a field of view that overlaps with a field of view of a number of other optical receiving elements. The optical receiving elements may optionally be grating couplers or photo detectors. The optical receiving elements may be disposed on a circuit board. The circuit board may be flexible and include control circuitry configured to form the image in accordance with the received responses of the optical receiving elements and further in accordance with the optical transfer functions of the of optical receiving elements. The circuit boards may include one or more flex sensors or strain gauges adapted to determine their curvatures.
    Type: Application
    Filed: August 13, 2018
    Publication date: March 7, 2019
    Inventors: Alexander D. White, Parham Porsandeh Khial, Seyed Ali Hajimiri
  • Publication number: 20190028623
    Abstract: A lens-less imaging device, includes, in part, a multitude of pixels each having a light detector and an associated optical element adapted to cause the pixel to be responsive to a different direction of light received from a target. Each pixel has a field of view that overlaps with a field of view of at least a subset of the remaining pixels. The optical element may be a transparent dielectric element, a transparent MEMS component, a transparent microlens, or include one or more metallic walls. The optical element may be a continuous mapping layer formed over the pixels. Each pixel may or may not have a Gaussian distribution response. The lens-less imaging device forms an image of a target in accordance with an optical transfer functions of the pixels as well as responses of the pixels to the light received from the target.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 24, 2019
    Inventors: Seyed Ali Hajimiri, Seyed Mohammadreza Fatemi, Aroutin Khachaturian, Parham Porsandeh Khial, Alexander D. White