Patents by Inventor Alexander E. Shapiro

Alexander E. Shapiro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8747515
    Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. A fully-dense discontinuously-reinforced titanium matrix composite (TMMC) material comprises (a) a matrix of titanium or titanium alloy as a major component, (b) ceramic and/or intermetallic hard particles dispersed in the matrix in the amount of ?50 vol. %, and (c) complex carbide- and/or silicide particles at least partially soluble in the matrix at the sintering or forging temperatures such as Ti4Cr3C6, Ti3SiC2, Cr3C2, Ti3AlC2, Ti2AlC, Al4C3, Al4SiC4, Al4Si2C5, Al8SiC7, V2C, (Ti,V)C, VCr2C2, and V2Cr4C3 dispersed in the matrix in the amount of ?20 vol. %.
    Type: Grant
    Filed: December 27, 2003
    Date of Patent: June 10, 2014
    Assignee: Advance Material Products, Inc
    Inventors: Volodymyr Duz, Vladimir S. Moxson, Alexander E. Shapiro
  • Publication number: 20120160361
    Abstract: The invention relates to the manufacture of protective coatings onto interior surface of long-length tubes or pipes having relatively small diameter, in order to prevent corrosion-, erosion-, or wear damage of said surface. The method for manufacturing a tube comprising an embedded corrosion-resistant and wear-resistant-coating, wherein the tube consists of an external tube layer, a bond layer, a corrosion- and wear-resistant coating, and an internal tube layer, includes: depositing the corrosion- and wear-resistant coating (CWRC) onto outer surface of the internal tube, depositing a bonding material onto CWRC, inserting the internal tube with deposited CWRC and bond material into the external tube to provide an embedded CWRC between external and internal tube layers, and bonding both tubes with the interior CWRC in one solid structure. A crack-healing compound or release compound is additionally deposited onto internal tube before CWRC, which is preferably alumina ceramic or hard thermal-sprayed alloy.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 28, 2012
    Inventors: George Fischer, Alexander E. Shapiro
  • Publication number: 20100074788
    Abstract: The invention is suitable for the manufacture of flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates and sheets for aircraft and automotive applications, etc. The method for manufacturing TMCC is comprised of the following steps: (a) preparing a basic powdered blend containing matrix alloy or titanium powders, dispersing ceramic and/or intermetallic powders, and powders of said complex carbide- and/or silicide particles, (b) preparing the Al—V master alloy containing ?5 wt. % of iron, (c) preparing the Al—V—Fe master alloy fine powder having a particle size of ?20 ?m, (d) mixing the basic powdered blend with the master alloy powder to obtain a chemical composition of TMCC, (e) compacting the powder mixture at room temperature, (f) sintering at the temperature which provides at least partial dissolution of dispersed powders, (g) forging at 1500-2300° F., and (h) cooling.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 25, 2010
    Applicant: Advance Material Products Inc.(ADMA Products, Inc.)
    Inventors: Vladimir S. Moxson, Volodymyr A. Duz, Alexander E. Shapiro
  • Publication number: 20090041609
    Abstract: The invention relates to manufacturing the flat or shaped titanium matrix composite articles having improved mechanical properties such as lightweight plates, sheets for aircraft and automotive applications, heat-sinking lightweight electronic substrates, armor plates, etc. High-strength discontinuously-reinforced titanium metal matrix composite (TMMC) comprises (a) titanium matrix or titanium alloy as a major component, (b) ceramic and/or ?50 vol. % intermetallic hard particles dispersed in matrix, (c) complex carbide- and/or boride particles at least partially soluble in matrix at sintering or forging temperatures such as ?50 vol. % AlV2C, AlTi2Si3, AlTi6Si3, VB2, TiVSi2, TiVB4, Ti2AlC, AlCr2C, TiAlV2, V2C, VSi2, Ta3B4, NbTiB4, Al3U2C3 dispersed in matrix. Method for manufacturing these TMMC materials is disclosed. Sintered TMMC density exceeds 98% and closed discontinuous porosity allows performing hot deformation in air without encapsulating.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Inventors: Volodymyr A. Duz, Vladimir S. Moxson, Alexander E. Shapiro