Patents by Inventor Alexander Egner

Alexander Egner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220364994
    Abstract: For correcting aberration-induced imaging errors of an optical system which includes an objective (14) and an adaptive optic (18), light (5) and a sample (20) are selected such that the light (5), in acting upon the sample (20), reduces a measurement signal (28) from the sample (20), wherein a relative variation of the measurement signal (28) depends on the intensity of the light (5). The measurement signal (28) from a focal area of the optical system in the sample (20) is registered over a first and a later second period of time (38, 37) to determine a first measurement value and a second measurement value. Over a third period of time (39) which overlaps with the first and/or the second period of time, the light (5) is focused into the focal area by means of the optical system. A measure value for the relative variation of the measurement signal (28) is determined from the first and the second measurement values and used in controlling the adaptive optic (18) as a metric to be optimized.
    Type: Application
    Filed: July 1, 2020
    Publication date: November 17, 2022
    Inventors: Alexander Egner, Claudia Geisler, Francesco Rocca
  • Patent number: 10684225
    Abstract: For multi-dimensional high-resolution imaging a structure marked with fluorescence markers, fluorescence enabling light is focused to illuminate a measurement area in a sample. A partial area of the measurement area is subjected to fluorescence inhibiting light. The partial area omits a center of the measurement area in that an intensity distribution of the fluorescence inhibiting light comprises a line-shaped intensity minimum. A minimal extension of the intensity minimum in a direction through the center area is by a factor k?2 smaller than a diameter of the measurement area in said direction. Without spatial resolution, fluorescence light emitted out of the measurement area is measured for a plurality of consecutive angle positions of the intensity minimum about the center, while the measurement area, for each angle position, is subjected to the fluorescence enabling light. A value of the measured fluorescence light is assigned to the position of the center.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: June 16, 2020
    Assignee: LASER-LABORATORIUM GOETTINGEN E.V
    Inventors: Alexander Egner, Claudia Geisler, Jennifer-Rose Krueger
  • Publication number: 20180024063
    Abstract: For multi-dimensional high-resolution imaging a structure marked with fluorescence markers, fluorescence enabling light is focused to illuminate a measurement area in a sample. A partial area of the measurement area is subjected to fluorescence inhibiting light. The partial area omits a center of the measurement area in that an intensity distribution of the fluorescence inhibiting light comprises a line-shaped intensity minimum. A minimal extension of the intensity minimum in a direction through the center area is by a factor k?2 smaller than a diameter of the measurement area in said direction. Without spatial resolution, fluorescence light emitted out of the measurement area is measured for a plurality of consecutive angle positions of the intensity minimum about the center, while the measurement area, for each angle position, is subjected to the fluorescence enabling light. A value of the measured fluorescence light is assigned to the position of the center.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Alexander Egner, Claudia Geisler, Jennifer-Rose Krueger
  • Patent number: 8174692
    Abstract: In high spatial resolution imaging, a structure in a specimen is marked with a substance which, in a first electronic state, is excited by light of one wavelength to emit fluorescent light, which is also converted from its first into a second electronic state by that light, and which returns from its second into its first electronic state. The specimen is imaged onto a sensor at a spatial resolution not resolving an average spacing between neighboring molecules of the substance, and exposed to the light at such an intensity that the molecules in the first state are alternately excited to emit fluorescent light and converted into their second state, and that at least 10% of the molecules presently in their first state lie at a distance from their closest neighboring molecules in their first state which is greater than the spatial resolution of the imaging onto the sensor.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 8, 2012
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Stefan W. Hell, Jonas Fölling, Christian Eggeling, Alexander Egner, Andreas Schönle, Mariano Bossi
  • Patent number: 8084754
    Abstract: For imaging of a structure, the structure is marked with a substance which can be converted by a switching signal from a first into a second state, and which provides an optical measurement signal in one of its states, only. The switching signal is applied such that at least 10% of the molecules of the substance being in the measurement signal providing state are at a distance from their closest neighbors, which is greater than the spatial resolution limit of imaging the specimen onto a sensor array, which in turn is greater than an average distance between the molecules of the substance. From an intensity distribution of the measurement signal recorded with the sensor array, the position is only determined for those molecules of the substance which are at a distance from their closest neighboring molecules in the measurement signal providing state, which is greater than the spatial resolution limit.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 27, 2011
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V.
    Inventors: Stefan Hell, Christian Eggeling, Alexander Egner, Jonas Fölling, Andreas Schönle, Mariano Bossi
  • Publication number: 20110160083
    Abstract: For imaging of a structure, the structure is marked with a substance which can be converted by a switching signal from a first into a second state, and which provides an optical measurement signal in one of its states, only. The switching signal is applied such that at least 10% of the molecules of the substance being in the measurement signal providing state are at a distance from their closest neighbors, which is greater than the spatial resolution limit of imaging the specimen onto a sensor array, which in turn is greater than an average distance between the molecules of the substance. From an intensity distribution of the measurement signal recorded with the sensor array, the position is only determined for those molecules of the substance which are at a distance from their closest neighboring molecules in the measurement signal providing state, which is greater than the spatial resolution limit.
    Type: Application
    Filed: January 25, 2011
    Publication date: June 30, 2011
    Inventors: Stefan Hell, Christian Eggeling, Alexander Egner, Jonas Fölling, Andreas Schönle, Mariano Bossi
  • Publication number: 20110081653
    Abstract: In high spatial resolution imaging, a structure in a specimen is marked with a substance which, in a first electronic state, is excited by light of one wavelength to emit fluorescent light, which is also converted from its first into a second electronic state by that light, and which returns from its second into its first electronic state. The specimen is imaged onto a sensor at a spatial resolution not resolving an average spacing between neighboring molecules of the substance, and exposed to the light at such an intensity that the molecules in the first state are alternately excited to emit fluorescent light and converted into their second state, and that at least 10% of the molecules presently in their first state lie at a distance from their closest neighboring molecules in their first state which is greater than the spatial resolution of the imaging onto the sensor.
    Type: Application
    Filed: November 18, 2010
    Publication date: April 7, 2011
    Applicant: Max-Planck-Gesellschaft zur Forderung der Wissenschaftern e.V.
    Inventors: Stefan W. HELL, Jonas FÖLLING, Christian EGGELING, Alexander EGNER, Andreas SCHÖNLE, Mariano BOSSI
  • Patent number: 7880150
    Abstract: For the high spatial resolution imaging of a structure of interest in a specimen, a substance is selected from a group of substances which have a fluorescent first state and a nonfluorescent second state; which can be converted fractionally from their first state into their second state by light which excites them into fluorescence, and which return from their second state into their first state; the specimen's structure of interest is imaged onto a sensor array, a spatial resolution limit of the imaging being greater (i.e.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: February 1, 2011
    Assignee: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
    Inventors: Stefan Hell, Christian Eggeling, Alexander Egner, Jonas Fölling, Andreas Schönle, Mariano Bossi
  • Publication number: 20090134342
    Abstract: For the high spatial resolution imaging of a structure of interest in a specimen, a substance is selected from a group of substances which have a fluorescent first state and a nonfluorescent second state; which can be converted fractionally from their first state into their second state by light which excites them into fluorescence, and which return from their second state into their first state; the specimen's structure of interest is imaged onto a sensor array, a spatial resolution limit of the imaging being greater (i.e.
    Type: Application
    Filed: May 29, 2008
    Publication date: May 28, 2009
    Inventors: Stefan Hell, Christian Eggeling, Alexander Egner, Jonas Folling, Andreas Schonle, Mariano Bossi