Patents by Inventor Alexander G. Fassbender

Alexander G. Fassbender has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100018216
    Abstract: Embodiments include a method and apparatus for producing liquid fuel from a carbon-containing feed fuel such as coal. With embodiments, coal or other carbon-containing feed fuel may be utilized to produce co-products, including one or more liquid fuels, power, and/or other useful co-products, while capturing carbon dioxide for further use, storage, and/or sequestration.
    Type: Application
    Filed: March 17, 2009
    Publication date: January 28, 2010
    Inventor: Alexander G. Fassbender
  • Publication number: 20080156726
    Abstract: Embodiments include a method and apparatus for recovering ammonia and nitrogen from a waste stream. Embodiments further include recovering ammonia using an ammonia recovery process and a biological nitrogen recovery process. In some embodiments, a return stream from the ammonia recovery process may be used to provide alkalinity, carbon substrate, and/or biological oxygen demand to the biological nitrogen recovery process. In some embodiments, a hydrothermal sludge process may be used to further treat the waste stream and provide additional return to the ammonia recovery system. Other embodiments include an ammonia recovery system for conducting the ammonia recovery process, a biological nitrification and/or denitrification system for conducting the biological nitrogen recovery process, and an optional hydrothermal sludge processing system.
    Type: Application
    Filed: March 5, 2008
    Publication date: July 3, 2008
    Inventor: Alexander G. Fassbender
  • Publication number: 20080053913
    Abstract: Embodiments include a method and apparatus for cost-effective and efficient nutrient recovery from a waste stream. The nutrients recovered may include ammonia, phosphorous, and/or potassium. The ammonia and phosphorous recovery may be simultaneously accomplished. In some embodiments, ammonia is recovered along with other nutrients using lime or lime-based products.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventor: Alexander G. Fassbender
  • Publication number: 20080053909
    Abstract: Embodiments include a method and apparatus for cost-effective and efficient ammonia recovery from a waste stream. In some embodiments, ammonia is recovered after bicarbonate buffer removal from the waste stream via addition of an acid.
    Type: Application
    Filed: September 6, 2006
    Publication date: March 6, 2008
    Inventor: Alexander G. Fassbender
  • Patent number: 6918253
    Abstract: An elevated pressure power plant (100) for cleanly and efficiently oxidizing, gasifying or combusting a fuel. The fuel is oxidized or gasified in a reaction chamber (210) at a pressure range from approximately 700 psia to 2000 psia, or from approximately 850 psia to 1276 psia. Products of combustion from the chamber may be passed to a heat exchanger (224). A portion of the condensed water may be recycled to the products of combustion upstream of the heat exchanger. Also, before being passed to the reaction chamber, the coolant may be routed through the heat exchanger in a two-step pressure fashion.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: July 19, 2005
    Assignee: ThermoEnergy Power Systems, LLC
    Inventor: Alexander G. Fassbender
  • Patent number: 6893566
    Abstract: A sewage treatment system is disclosed in which a waste stream is separated into a primary sludge and water effluent, and the primary sludge is anaerobically digested and dewatered to produce a Class A biosolid. The water effluent is aerobically digested and separated to provide a waste activated sludge. The waste activated sludge is heated in a two-stage process with steam injection and indirect steam before it is passed to a hydrothermal process. The pH of the treated waste activated sludge is then increased, and the nitrogen is stripped and recovered as an ammonium salt. A low nitrogen stream with volatile fatty acids and soluble organics is then separated and fed to the aerobic digester. Biogas generated during anaerobic digestion provides energy for heating the waste activated sludge for the hydrothermal process, and reject heat from the hydrothermal process heats the primary sludge for thermophilic anaerobic digestion.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: May 17, 2005
    Inventor: Alexander G. Fassbender
  • Publication number: 20040164019
    Abstract: A sewage treatment system is disclosed in which a waste stream is separated into a primary sludge and water effluent, and the primary sludge is anaerobically digested and dewatered to produce a Class A biosolid. The water effluent is aerobically digested and separated to provide a waste activated sludge. The waste activated sludge is heated in a two-stage process with steam injection and indirect steam before it is passed to a hydrothermal process. The pH of the treated waste activated sludge is then increased, and the nitrogen is stripped and recovered as an ammonium salt. A low nitrogen stream with volatile fatty acids and soluble organics is then separated and fed to the aerobic digester. Biogas generated during anaerobic digestion provides energy for heating the waste activated sludge for the hydrothermal process, and reject heat from the hydrothermal process heats the primary sludge for thermophilic anaerobic digestion.
    Type: Application
    Filed: February 26, 2003
    Publication date: August 26, 2004
    Inventor: Alexander G. Fassbender
  • Patent number: 6716351
    Abstract: A system comprising a first anaerobic digester (12), an ammonia recovery vessel (16) and a second anaerobic digester (14). Microorganisms in the first digester are primarily hydrolyzers and acetogens, while those in the second digester are primarily methanogens. A nitrogen containing feed stock undegoes hydrolysis ans acetogenesis in the first digester. The effluent is passed to the ammonia recovery vessel in which ammonia is removed. The low ammonia effluent stream is passed to the second digester to undergo methanogenesis, generating a biogas. In an alternate embodiment, a single anaerobic digester is used. The effluent is treated for ammonia removal and recycled to the digester to keep the ammonia levels sufficiently low to avoid ammonia inhibition.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: April 6, 2004
    Inventor: Alexander G. Fassbender
  • Publication number: 20030094410
    Abstract: A system comprising a first anaerobic digester (12), an ammonia recovery vessel (16) and a second anaerobic digester (14). Microorganisms in the first digester are primarily hydrolyzers and acetogens, while those in the second digester are primarily methanogens. A nitrogen containing feed stock undegoes hydrolysis ans acetogenesis in the first digester. The effluent is passed to the ammonia recovery vessel in which ammonia is removed. The low ammonia effluent stream is passed to the second digester to undergo methanogenesis, generating a biogas. In an alternate embodiment, a single anaerobic digester is used. The effluent is treated for ammonia removal and recycled to the digester to keep the ammonia levels sufficiently low to avoid ammonia inhibition.
    Type: Application
    Filed: July 22, 2002
    Publication date: May 22, 2003
    Inventor: Alexander G. Fassbender
  • Patent number: 6558643
    Abstract: Methods for direct reduction of ammonia from waste streams by the steps of reacting an aqueous ammonia containing waste stream with a solution of a strong acid and a metal salt, wherein the cation in said metal salt of said solution is selected from the group consisting of Ag, Cd, Co, Cr, Cu, Hg, Ni, Pd, Zn; and wherein an ammonium-double salt is formed with said metal salt in an ammonia depleted waste stream; and treating said depleted waste stream to crystallize an ammonium-metal double salt therefrom.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: May 6, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Publication number: 20030037550
    Abstract: An elevated pressure power plant (100) for cleanly and efficiently oxidizing, gasifying or combusting a fuel. The fuel is oxidized or gasified in a reaction chamber (210) at a pressure range from approximately 700 psia to 2000 psia, or from approximately 850 psia to 1276 psia. Products of combustion from the chamber may be passed to a heat exchanger (224). A portion of the condensed water may be recycled to the products of combustion upstream of the heat exchanger. Also, before being passed to the reaction chamber, the coolant may be routed through the heat exchanger in a two-step pressure fashion.
    Type: Application
    Filed: July 22, 2002
    Publication date: February 27, 2003
    Inventor: Alexander G. Fassbender
  • Patent number: 6391203
    Abstract: A system is disclosed comprising a first anaerobic digester, an ammonia recovery vessel, and a second anaerobic digester. Microorganisms within the first anaerobic digester are primarily hydrolyzers and acetogens, and microorganisms within the second anaerobic digester are primarily methanogens. A nitrogen containing feed stock is passed to the first digester in which the feed stock is treated to accomplish hydrolysis and acetogenesis. An effluent stream from the first digester is passed to the ammonia recovery vessel in which ammonia is removed to generate a low ammonia effluent stream. The low ammonia effluent stream is then passed to the second digester in which it is treated to accomplish methanogenesis, thereby generating a biogas.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: May 21, 2002
    Inventor: Alexander G. Fassbender
  • Publication number: 20010037976
    Abstract: Apparatus, materials, and methods for removing ammonia from fluids using metal hydroxides (e.g. zinc hydroxide) and metal loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal loaded media; the metal loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and ZnSO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Application
    Filed: December 29, 2000
    Publication date: November 8, 2001
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Publication number: 20010033816
    Abstract: Apparatus, materials, and methods for removing ammonia from fluids using metal hydroxides (e.g. zinc hydroxide) and metal loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal loaded media; the metal loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and ZnSO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Application
    Filed: January 4, 2001
    Publication date: October 25, 2001
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Patent number: 6196000
    Abstract: An elevated pressure power plant or system is disclosed that provides for cleanly and efficiently oxidizing or combusting a fuel, such as a fossil fuel, as follows. The fuel and an oxidant are passed to a reaction chamber, and the fuel is oxidized in the chamber at a pressure that is preferably substantially within a range of from approximately 700 psia to approximately 2000 psia and that is more preferably substantially within a range of from approximately 850 psia to approximately 1276 psia. A coolant is passed to the reaction chamber in a heat exchange relationship with the fuel and oxidant. The pressure of the reaction chamber is selected so that it is greater than or equal to a liquid-vapor equilibrium pressure of carbon dioxide at the temperature at which the coolant is passed to the reaction chamber.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: March 6, 2001
    Assignee: Thermo Energy Power Systems, LLC
    Inventor: Alexander G. Fassbender
  • Patent number: 5533868
    Abstract: The apparatus of the present invention contains at least one pressure vessel having a separator defining two chambers within each pressure vessel. The separator slideably seals the two chambers. Feedstock is placed within a second chamber adjoining the first chamber via a feedstock pump operating in a high volume low head mode. A pressurizer operates in a low volume high pressure mode to pressurize the working fluid and the feedstock in the pressure vessels to a process operating pressure. A circulating pump operates in a high volume, low head mode to circulate feedstock through the process. A fourth pump is used for moving feedstock and product at a pressure below the process operating pressure.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: July 9, 1996
    Assignee: Battelle Memorial Institute
    Inventor: Alexander G. Fassbender
  • Patent number: 5167930
    Abstract: A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: December 1, 1992
    Assignee: Battelle Memorial Institute
    Inventor: Alexander G. Fassbender
  • Patent number: 4752314
    Abstract: A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: June 21, 1988
    Assignee: Battelle Development Corporation
    Inventors: Alexander G. Fassbender, Paul C. Walkup, Lyle K. Mudge
  • Patent number: 3938035
    Abstract: A flask having a threaded neck and a cap adapted for threaded engagement on the neck. A laminated disc between the cap and the neck forms a gas tight seal and the cap has a central opening that exposes a medial region of the disc. Piercing the disc through the opening are two electrodes, the inner ends of which contact the sample within the flask and the outer ends of which afford connection of test equipment thereto. Cylindric glass tubes are fitted over the external portion of the electrodes to provide physical support therefor; silicone rubber or the like serves to retain the glass cylinders in place and form a gas tight seal between the cylinders and the electrodes. Shrinkable tubing is shrunk over the glass tubes to afford further mechanical support and sealing. A final relatively large diameter shrinkable tube is shrunk over both electrodes and their associated glass cylinders.
    Type: Grant
    Filed: July 16, 1974
    Date of Patent: February 10, 1976
    Inventors: James C. Administrator of the National Aeronautics and Space Administration, with respect to an invention of Fletcher, William P. Gilbreath, Michael J. Adamson, Alexander G. Fassbender