Patents by Inventor Alexander Goldshmidt
Alexander Goldshmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12110495Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: GrantFiled: March 29, 2019Date of Patent: October 8, 2024Assignee: MONSANTO TECHNOLOGY LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20240254501Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.Type: ApplicationFiled: February 22, 2024Publication date: August 1, 2024Applicant: Monsanto Technology LLCInventors: Brent BROWER-TOLAND, Shunhong DAI, Karen GABBERT, Alexander GOLDSHMIDT, Miya HOWELL, Brad MCDILL, Dan OVADYA, Beth SAVIDGE, Vijay SHARMA
-
Publication number: 20230159946Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.Type: ApplicationFiled: November 28, 2022Publication date: May 25, 2023Applicant: Monsanto Technology LLCInventors: Brent BROWER-TOLAND, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya Howell, Brad Mcdill, Dan Ovadya, Beth Savidge, Vijay Sharma
-
Publication number: 20230110884Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: ApplicationFiled: June 22, 2022Publication date: April 13, 2023Applicant: MONSANTO TECHNOLOGY LLCInventors: Edwards Allen, Jayanand BODDU, Charles R. DIETRICH, Alexander GOLDSHMIDT, Miya HOWELL, Kevin R. KOSOLA, Silvalinganna MANJUNATH, Anil NEELAM, Linda RYMARQUIS, Thomas L. SLEWINSKI, Tyamagondlu V. VENKATESH, Huai WANG
-
Patent number: 11555201Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.Type: GrantFiled: October 18, 2017Date of Patent: January 17, 2023Assignee: Monsanto Technology LLCInventors: Brent Brower-Toland, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya Howell, Brad McDill, Dan Ovadya, Beth Savidge, Vijay Sharma
-
Publication number: 20220364108Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: ApplicationFiled: April 5, 2022Publication date: November 17, 2022Applicant: MONSANTO TECHNOLOGY LLCInventors: Edwards M. ALLEN, Jayanand BODDU, Charles R. DIETRICH, Alexander GOLDSHMIDT, Miya HOWELL, Kevin R. KOSOLA, Sivalinganna MANJUNATH, Anil NEELAM, Linda RYMARQUIS, Thomas L. SLEWINSKI, Tyamagondlu V. VENKATESH, Huai WANG
-
Patent number: 11414670Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: GrantFiled: April 13, 2020Date of Patent: August 16, 2022Assignee: Monsanto Technology LLCInventors: Edwards M. Allen, Jayanand Boddu, Charles R. Dietrich, Alexander Goldshmidt, Miya Howell, Kevin R. Kosola, Anil Neelam, Thomas L. Slewinski, Tyamagondlu V. Venkatesh, Huai Wang, Sivalinganna Manjunath, Linda Rymarquis
-
Patent number: 11319550Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: GrantFiled: April 13, 2020Date of Patent: May 3, 2022Assignee: Monsanto Technology LLCInventors: Edwards M. Allen, Jayanand Boddu, Charles R. Dietrich, Alexander Goldshmidt, Miya Howell, Kevin R. Kosola, Anil Neelam, Thomas L. Slewinski, Tyamagondlu V. Venkatesh, Huai Wang, Sivalinganna Manjunath, Linda Rymarquis
-
Publication number: 20220090105Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: December 7, 2021Publication date: March 24, 2022Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Patent number: 11225671Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: GrantFiled: March 29, 2019Date of Patent: January 18, 2022Assignee: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20200362360Abstract: This disclosure provides recombinant DNA constructs and modified or transgenic plants having enhanced traits such as increased yield, increased nitrogen use efficiency, and enhanced drought tolerance or water use efficiency. Modified or transgenic plants may include field crops as well as plant propagules, plant parts and progeny of such modified or transgenic plants. Methods of making and using such modified or transgenic plants are also provided, as are methods of producing seed from such modified or transgenic plants, growing such seed, and selecting progeny plants with enhanced traits. Further disclosed are modified or transgenic plants with altered phenotypes or traits which are useful for screening and selecting transgenic events, edits or mutations with a desired enhanced trait.Type: ApplicationFiled: November 21, 2018Publication date: November 19, 2020Inventors: Robert M. Alba, Edwards M. Allen, Brent Brower-Toland, Molian Deng, Todd DeZwaan, Charles Dietrich, Alexander Goldshmidt, Cara L. Griffith, Miya D. Howell, Niranjani J. Iyer, Hongwu Jia, Saritha V. Kuriakose, Hong Li, Linda L. Lutfiyya, Anil Neelam, Shengzhi Pang, Mingsheng Peng, Monnanda Somaiah Rajani, Daniel Ruzicka, Daniel P. Schachtman, Vijay K. Sharma, Tyamagondlu V. Venkatesh, Huai Wang, Xiaoyun Wu, Nanfei Xu
-
Publication number: 20200248200Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: ApplicationFiled: April 13, 2020Publication date: August 6, 2020Applicant: MONSANTO TECHNOLOGY LLCInventors: Edwards M. ALLEN, Jayanand BODDU, Charles R. DIETRICH, Alexander GOLDSHMIDT, Miya HOWELL, Kevin R. KOSOLA, Anil NEELAM, Thomas L. SLEWINSKI, Tyamagondlu V. VENKATESH, Huai WANG, Sivalinganna MANJUNATH, Linda RYMARQUIS
-
Publication number: 20200248199Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: ApplicationFiled: April 13, 2020Publication date: August 6, 2020Applicant: MONSANTO TECHNOLOGY LLCInventors: Edwards M. ALLEN, Jayanand BODDU, Charles R. DIETRICH, Alexander GOLDSHMIDT, Miya HOWELL, Kevin R. KOSOLA, Anil NEELAM, Thomas L. SLEWINSKI, Tyamagondlu V. VENKATESH, Huai WANG, Sivalinganna MANJUNATH, Linda RYMARQUIS
-
Patent number: 10724047Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: GrantFiled: August 17, 2017Date of Patent: July 28, 2020Assignee: MONSANTO TECHNOLOGY LLCInventors: Edwards M. Allen, Jayanand Boddu, Charles R. Dietrich, Alexander Goldshmidt, Miya Howell, Kevin R. Kosola, Sivalinganna Manjunath, Anil Neelam, Linda Rymarquis, Thomas L. Slewinski, Tyamagondlu V. Venkatesh, Huai Wang
-
Publication number: 20190300890Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: March 29, 2019Publication date: October 3, 2019Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20190218563Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: March 29, 2019Publication date: July 18, 2019Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Patent number: 10294486Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: GrantFiled: April 18, 2016Date of Patent: May 21, 2019Assignee: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
-
Publication number: 20180105819Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.Type: ApplicationFiled: October 18, 2017Publication date: April 19, 2018Inventors: Brent BROWER-TOLAND, Shunhong DAI, Karen GABBERT, Alexander GOLDSHMIDT, Miya HOWELL, Brad MCDILL, Dan OVADYA, Beth SAVIDGE, Vijay SHARMA
-
Publication number: 20180051295Abstract: The present disclosure provides compositions and methods for altering gibberellin (GA) content in corn or other cereal plants. Methods and compositions are also provided for altering the expression of genes related to gibberellin biosynthesis through suppression, mutagenesis and/or editing of specific subtypes of GA20 or GA3 oxidase genes. Modified plant cells and plants having a suppression element or mutation reducing the expression or activity of a GA oxidase gene are further provided comprising reduced gibberellin levels and improved characteristics, such as reduced plant height and increased lodging resistance, but without off-types.Type: ApplicationFiled: August 17, 2017Publication date: February 22, 2018Applicant: MONSANTO TECHNOLOGY LLCInventors: Edwards M. Allen, Jayanand Boddu, Charles R. Dietrich, Alexander Goldshmidt, Miya Howell, Kevin R. Kosola, Anil Neelam, Thomas L. Slewinski, Tyamagondlu V. Venkatesh, Huai Wang
-
Publication number: 20160304891Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.Type: ApplicationFiled: April 18, 2016Publication date: October 20, 2016Applicant: Monsanto Technology LLCInventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma