Patents by Inventor Alexander GONCHAROV
Alexander GONCHAROV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11894026Abstract: The present disclosure is generally related to a magnetic recording device comprising a magnetic recording head having a first current flow in a cross-track direction through a trailing shield. In one or more embodiments, a second current flows in a cross-track direction around the main pole. The magnetic recording device comprises a main pole disposed between a trailing shield, a leading shield, and side shields. A trailing gap is disposed between the side shields and the trailing shield. A high moment seed layer is disposed between the main pole and the trailing shield. A first insulation layer is disposed within the trailing shield and directs the first current through the trailing shield, guided to the proximity of the main pole. A second insulation layer, disposed below the trailing shield, directs the second current through the trailing shield, or alternatively through the side shields and around the main pole.Type: GrantFiled: June 21, 2022Date of Patent: February 6, 2024Assignee: Western Digital Technologies, Inc.Inventors: Alexander Goncharov, Muhammad Asif Bashir, Petrus Antonius Van Der Heijden, Yunfei Ding, Zhigang Bai, James Terrence Olson
-
Patent number: 11881235Abstract: The present disclosure relates to a magnetic recording head having an exchange biased leading shield or leading edge shield (LES). The LES is a bilayer structure. One or more layers are coupled below the LES such that the LES is disposed between the main pole and the one or more layers. The one or more layers exchange bias the LES such that the upper layer of the LES has a magnetization parallel to the magnetization of the trailing shield. The lower layer of the LES has a magnetization that is antiparallel to the magnetization of the upper layer of the LES. The one or more layers set the preferred direction for the lower layer of the LES and sets the LES as a two-domain state without relying upon the anisotropy field (Hk) of either the upper or lower layers of the LES.Type: GrantFiled: February 22, 2022Date of Patent: January 23, 2024Assignee: Western Digital Technologies, Inc.Inventors: Alexander Goncharov, Zhanjie Li, Terence T. Lam, Suping Song
-
Patent number: 11881237Abstract: The present disclosure is generally related to a magnetic recording device comprising a magnetic recording head having a current flow in a cross-track direction around a main pole. The magnetic recording device comprises a main pole disposed between a trailing shield, a leading shield, and side shields. A trailing gap is disposed between the main pole and the trailing shield. A hot seed layer is disposed between the trailing gap and the trailing shield. A first insulation layer is disposed between the hot seed layer and the trailing shield, where the first insulation layer contacts the side shields. A second insulation layer is disposed between the main pole and leading shield, where the second insulation layer contacts the side shields. The first and second insulation layers direct the current through the side shields and across the main pole in a cross-track direction.Type: GrantFiled: November 24, 2021Date of Patent: January 23, 2024Assignee: Western Digital Technologies, Inc.Inventors: Muhammad Asif Bashir, Edward Hin Pong Lee, Amanda Baer, Aron Pentek, Zhigang Bai, Yunfei Ding, James Terrence Olson, Alexander Goncharov, Petrus Antonius Van Der Heijden
-
Patent number: 11869548Abstract: Aspects of the present disclosure generally relate to a magnetic recording head assembly that includes an external alternating current (AC) source. A magnetic recording head of the magnetic recording head assembly includes a conductive structure between a main pole and a trailing shield. The conductive structure includes a conductive layer, and the conductive layer is nonmagnetic. The magnetic recording head assembly also includes an external AC source to supply AC current that flows through the conductive structure. In one aspect, the conductive structure is between a coil structure and the trailing shield, and the external AC source is coupled to the coil structure. The conductive structure and the external AC source facilitate consistently providing an enhanced AC writing field to facilitate effective and reliable writing, high ADC, high SNR, and reduced jitter.Type: GrantFiled: February 23, 2021Date of Patent: January 9, 2024Assignee: Western Digital Technologies, Inc.Inventors: Muhammad Asif Bashir, Petrus Antonius Van Der Heijden, James Terrence Olson, Alexander Goncharov, Zhigang Bai, Yunfei Ding
-
Patent number: 11854584Abstract: The present disclosure relates to heat-assisted magnetic recording (HAMR) write heads including a waveguide and a main pole having a main pole tip. One or more current paths are provided through the main pole tip. Terminals of the one or more current paths can be coupled to the main pole, a trailing shield, a leading shield, a heat sink layer, a touch pad, a pole diffusion barrier layer, a NTS sensor, or another suitable component of the HAMR write head.Type: GrantFiled: July 29, 2022Date of Patent: December 26, 2023Assignee: Western Digital Technologies, Inc.Inventors: Muhammad Asif Bashir, Alexander Goncharov, Takuya Matsumoto, Petrus Antonius Van Der Heijden
-
Patent number: 11769522Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a main pole (MP), a trailing shield (TS), a trailing gap (TG) disposed between the MP and the TS, and a spin torque oscillator (STO) disposed in the TG adjacent to the MP. A notch may be disposed in the TG between the STO and TS. The notch comprises one or more notch interlayers comprising a non-magnetic material and/or a magnetic material. A bump may be disposed in the TG between the TS and the STO or the notch. The bump comprises one or more bump interlayers comprising a non-magnetic material. A hot seed layer may be coupled to the TS adjacent to the bump, the notch, or the STO. The hot seed layer comprises one or more hot seed interlayers comprising a non-magnetic material.Type: GrantFiled: June 11, 2021Date of Patent: September 26, 2023Assignee: Western Digital Technologies, Inc.Inventors: Alexander Goncharov, Muhammad Asif Bashir, Petrus Antonius Van Der Heijden
-
Publication number: 20230267953Abstract: The present disclosure relates to a magnetic recording head having an exchange biased leading shield or leading edge shield (LES). The LES is a bilayer structure. One or more layers are coupled below the LES such that the LES is disposed between the main pole and the one or more layers. The one or more layers exchange bias the LES such that the upper layer of the LES has a magnetization parallel to the magnetization of the trailing shield. The lower layer of the LES has a magnetization that is antiparallel to the magnetization of the upper layer of the LES. The one or more layers set the preferred direction for the lower layer of the LES and sets the LES as a two-domain state without relying upon the anisotropy field (Hk) of either the upper or lower layers of the LES.Type: ApplicationFiled: February 22, 2022Publication date: August 24, 2023Applicant: Western Digital Technologies, Inc.Inventors: Alexander GONCHAROV, Zhanjie LI, Terence T. LAM, Suping SONG
-
Patent number: 11682421Abstract: The present disclosure generally relates to a tape drive including a tape head. The tape head comprises at least one same gap verify (SGV) module comprising a plurality of write transducer and read transducer pairs disposed on a substrate. Each pair comprises a null shield disposed between the write transducer and the read transducer. One or more of a position between the write transducer and the read transducer of each pair, a width, a height, a thickness, and a permeability of the null shield is adjusted to create a null region, and the read transducer is disposed in the null region. The SGV module is configured to write data to a tape using the write transducer of each pair and read verify the data written on the tape using the read transducer of each pair such that the write transducer and read transducer of each pair are concurrently operable.Type: GrantFiled: June 25, 2021Date of Patent: June 20, 2023Assignee: Western Digital Technologies, Inc.Inventors: David J. Seagle, Alexander Goncharov, Robert G. Biskeborn
-
Patent number: 11657836Abstract: Aspects of the present disclosure generally relate to a magnetic recording head of a spintronic device, such as a write head of a data storage device, for example a magnetic media drive. In one example, a magnetic recording head includes a main pole, a trailing shield, and a spin torque layer (STL) between the main pole and the trailing shield. The magnetic recording head includes a first layer structure on the main pole, and the first layer structure includes a negative polarization layer. The magnetic recording head also includes a second layer structure disposed on the negative polarization layer and between the negative polarization layer and the STL. The negative polarization layer is an FeCr layer. The second layer structure includes a Cr layer disposed on the FeCr layer, and a Cu layer disposed on the Cr layer and between the Cr layer and the STL.Type: GrantFiled: January 28, 2022Date of Patent: May 23, 2023Assignee: Western Digital Technologies, Inc.Inventors: James Mac Freitag, Susumu Okamura, Alexander Goncharov, Zheng Gao
-
Patent number: 11651783Abstract: The present disclosure relates to a magnetic recording head having dual layer leading shield or leading edge shield (LES). The layer closest to the main pole of the magnetic recording head has a shallow flare to enhance shape anisotropy while the layer farthest away from the main pole has a steep flare to initiate reversal of the direction of magnetization for the layer during the initialization. The layer closest to the main pole will retain a direction of magnetization that matches the direction of magnetization of the initialization direction. Both layers are sufficiently thick to ensure a two domain state that is favorable from an energy balance point of view.Type: GrantFiled: February 22, 2022Date of Patent: May 16, 2023Assignee: Western Digital Technologies, Inc.Inventor: Alexander Goncharov
-
Patent number: 11646053Abstract: The present disclosure generally relates to a tape drive including a tape head. The tape head comprises at least one same gap verify (SGV) module comprising a plurality of write transducer and read transducer pairs disposed on a substrate. In each pair, the write transducer comprises a write pole having a height, and the read transducer comprises a first shield disposed adjacent to the write pole. The write pole and the first shield of each pair are spaced apart a distance greater than or equal to about 20% of the height of the write pole. The SGV module is configured to write data to a tape using the write transducer of each pair and read verify the data written on the tape using the read transducer of each pair such that the write transducer and read transducer of each pair are concurrently operable.Type: GrantFiled: June 23, 2021Date of Patent: May 9, 2023Assignee: Western Digital Technologies, Inc.Inventors: David J. Seagle, Alexander Goncharov, Robert G. Biskeborn
-
Publication number: 20220415355Abstract: The present disclosure generally relates to a tape drive including a tape head. The tape head comprises at least one same gap verify (SGV) module comprising a plurality of write transducer and read transducer pairs disposed on a substrate. In each pair, the write transducer comprises a write pole having a height, and the read transducer comprises a first shield disposed adjacent to the write pole. The write pole and the first shield of each pair are spaced apart a distance greater than or equal to about 20% of the height of the write pole. The SGV module is configured to write data to a tape using the write transducer of each pair and read verify the data written on the tape using the read transducer of each pair such that the write transducer and read transducer of each pair are concurrently operable.Type: ApplicationFiled: June 23, 2021Publication date: December 29, 2022Inventors: David J. SEAGLE, Alexander GONCHAROV, Robert G. BISKEBORN
-
Publication number: 20220415344Abstract: The present disclosure generally relates to a tape drive including a tape head. The tape head comprises at least one same gap verify (SGV) module comprising a plurality of write transducer and read transducer pairs disposed on a substrate. Each pair comprises a null shield disposed between the write transducer and the read transducer. One or more of a position between the write transducer and the read transducer of each pair, a width, a height, a thickness, and a permeability of the null shield is adjusted to create a null region, and the read transducer is disposed in the null region. The SGV module is configured to write data to a tape using the write transducer of each pair and read verify the data written on the tape using the read transducer of each pair such that the write transducer and read transducer of each pair are concurrently operable.Type: ApplicationFiled: June 25, 2021Publication date: December 29, 2022Inventors: David J. SEAGLE, Alexander GONCHAROV, Robert G. BISKEBORN
-
Publication number: 20220399035Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a main pole (MP), a trailing shield (TS), a trailing gap (TG) disposed between the MP and the TS, and a spin torque oscillator (STO) disposed in the TG adjacent to the MP. A notch may be disposed in the TG between the STO and TS. The notch comprises one or more notch interlayers comprising a non-magnetic material and/or a magnetic material. A bump may be disposed in the TG between the TS and the STO or the notch. The bump comprises one or more bump interlayers comprising a non-magnetic material. A hot seed layer may be coupled to the TS adjacent to the bump, the notch, or the STO. The hot seed layer comprises one or more hot seed interlayers comprising a non-magnetic material.Type: ApplicationFiled: June 11, 2021Publication date: December 15, 2022Inventors: Alexander GONCHAROV, Muhammad ASIF BASHIR, Petrus Antonius VAN DER HEIJDEN
-
Patent number: 11508401Abstract: Aspects of the present disclosure generally relate to a magnetic recording head of a magnetic recording device that facilitates generating a downtrack magnetic bias field to enhance writing. During magnetic writing using the magnetic recording head, a bias current is directed in a cross-track direction on the trailing side of the main pole. Bias current flowing in the cross-track direction on a leading side of the main pole is reduced or eliminated. The bias current flowing in the cross-track direction on the trailing side of the main pole facilitates generating a magnetic field in a downtrack direction. The magnetic field in the downtrack direction is a bias field generated using the bias current. The magnetic bias field in the downtrack direction facilitates enhanced writing performance and increased areal density capability (ADC) for magnetic recording.Type: GrantFiled: February 23, 2021Date of Patent: November 22, 2022Assignee: Western Digital Technologies, Inc.Inventors: Muhammad Asif Bashir, Petrus Antonius Van Der Heijden, James Terrence Olson, Alexander Goncharov, Zhigang Bai, Yunfei Ding
-
Patent number: 11417356Abstract: The present disclosure generally relates to a magnetic media drive employing a magnetic recording head. The magnetic recording head comprises a main pole, a hot seed layer, and a write assist stack disposed between the main pole and the hot seed layer. In one embodiment, the write assist stack comprises a seed layer, a spin torque layer, and a notch layer. One or more of the seed layer and the notch layer have a first cross-track width and the spin torque layer has a second cross-track width less than the first cross track width. In another embodiment, the write assist stack comprises a seed layer, a spin polarization layer, and a notch layer. One or more of the seed layer and the notch layer have a first cross-track width and the spin polarization layer has a second cross-track width less than the first cross track width.Type: GrantFiled: June 30, 2020Date of Patent: August 16, 2022Assignee: Western Digital Technologies, Inc.Inventors: Muhammad Asif Bashir, Alexander Goncharov, Petrus Antonius Van Der Hemden, Aron Pentek, Yi Zhang, Venkatesh Chembrolu
-
Publication number: 20220148619Abstract: Aspects of the present disclosure generally relate to a magnetic recording head of a spintronic device, such as a write head of a data storage device, for example a magnetic media drive. In one example, a magnetic recording head includes a main pole, a trailing shield, and a spin torque layer (STL) between the main pole and the trailing shield. The magnetic recording head a first layer structure on the main pole, and the first layer structure includes a negative polarization layer. The magnetic recording head also includes a second layer structure disposed on the negative polarization layer and between the negative polarization layer and the STL. The negative polarization layer is an FeCr layer. The second layer structure includes a Cr layer disposed on the FeCr layer, and a Cu layer disposed on the Cr layer and between the Cr layer and the STL.Type: ApplicationFiled: January 28, 2022Publication date: May 12, 2022Applicant: Western Digital Technologies, Inc.Inventors: James Mac FREITAG, Susumu OKAMURA, Alexander GONCHAROV, Zheng GAO
-
Patent number: 11257514Abstract: Aspects of the present disclosure generally relate to a magnetic recording head of a spintronic device, such as a write head of a data storage device, for example a magnetic media drive. In one example, a magnetic recording head includes a main pole, a trailing shield, and a spin torque layer (STL) between the main pole and the trailing shield. The magnetic recording head includes a first layer structure on the main pole, and the first layer structure includes a negative polarization layer. The magnetic recording head also includes a second layer structure disposed on the negative polarization layer and between the negative polarization layer and the STL. The negative polarization layer is an FeCr layer. The second layer structure includes a Cr layer disposed on the FeCr layer, and a Cu layer disposed on the Cr layer and between the Cr layer and the STL.Type: GrantFiled: June 25, 2020Date of Patent: February 22, 2022Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.Inventors: James Mac Freitag, Susumu Okamura, Alexander Goncharov, Zheng Gao
-
Publication number: 20210407534Abstract: Aspects of the present disclosure generally relate to a magnetic recording head of a spintronic device, such as a write head of a data storage device, for example a magnetic media drive. In one example, a magnetic recording head includes a main pole, a trailing shield, and a spin torque layer (STL) between the main pole and the trailing shield. The magnetic recording head a first layer structure on the main pole, and the first layer structure includes a negative polarization layer. The magnetic recording head also includes a second layer structure disposed on the negative polarization layer and between the negative polarization layer and the STL. The negative polarization layer is an FeCr layer. The second layer structure includes a Cr layer disposed on the FeCr layer, and a Cu layer disposed on the Cr layer and between the Cr layer and the STL.Type: ApplicationFiled: June 25, 2020Publication date: December 30, 2021Inventors: James Mac FREITAG, Susumu OKAMURA, Alexander GONCHAROV, Zheng GAO
-
Patent number: 11209633Abstract: An iris image acquisition system for a mobile device, comprises a lens assembly arranged along an optical axis and configured for forming an image comprising at least one iris of a subject disposed frontally to the lens assembly; and an image sensor configured to acquire the formed image. The lens assembly comprises a first lens refractive element and at least one second lens element for converging incident radiation to the first refractive element. The first refractive element has a variable thickness configured to counteract a shift of the formed image along the optical axis induced by change in iris-lens assembly distance, such that different areas of the image sensor on which irises at different respective iris-lens assembly distances are formed are in focus within a range of respective iris-lens assembly distances at which iris detail is provided at sufficient contrast to be recognised.Type: GrantFiled: May 7, 2018Date of Patent: December 28, 2021Assignee: FotoNation LimitedInventors: Niamh Fitzgerald, Christopher Dainty, Alexander Goncharov