Patents by Inventor Alexander Gorer

Alexander Gorer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9957623
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: May 1, 2018
    Assignee: Calera Corporation
    Inventors: Ryan J Gilliam, Bryan Boggs, Kyle Self, Margarete K Leclerc, Alexander Gorer, Michael J Weiss, John H Miller, Samaresh Mohanta
  • Publication number: 20160108529
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 21, 2016
    Inventors: Thomas A. Albrecht, Ryan J. Gilliam, Bryan Boggs, Kyle Self, Dennis W. Solas, Michael Kostowskyj, Margarete K. Leclerc, Alexander Gorer, Michael Joseph Weiss
  • Publication number: 20160060774
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Application
    Filed: October 21, 2015
    Publication date: March 3, 2016
    Inventors: Ryan J. Gilliam, Bryan Boggs, Kyle Self, Margarete K. Leclerc, Alexander Gorer, Michael J. Weiss, John H. Miller, Samaresh Mohanta
  • Patent number: 9200375
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 1, 2015
    Assignee: Calera Corporation
    Inventors: Ryan J Gilliam, Bryan Boggs, Kyle Self, Margarete K Leclerc, Alexander Gorer, Michael J Weiss, John H Miller, Samaresh Mohanta
  • Patent number: 9187834
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 17, 2015
    Assignee: Calera Corporation
    Inventors: Thomas A. Albrecht, Ryan J. Gilliam, Bryan Boggs, Kyle Self, Dennis W. Solas, Michael Kostowskyj, Margarete K. Leclerc, Alexander Gorer, Michael Joseph Weiss
  • Patent number: 9187835
    Abstract: There are provided methods and systems for an electrochemical cell including an anode and a cathode where the anode is contacted with a metal ion that converts the metal ion from a lower oxidation state to a higher oxidation state. The metal ion in the higher oxidation state is reacted with hydrogen gas, an unsaturated hydrocarbon, and/or a saturated hydrocarbon to form products.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: November 17, 2015
    Assignee: Calera Corporation
    Inventors: Thomas A. Albrecht, Ryan J. Gilliam, Bryan Boggs, Kyle Self, Dennis W. Solas, Michael Kostowskyj, Margarete K. Leclerc, Alexander Gorer, Michael Joseph Weiss
  • Publication number: 20150287616
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: May 29, 2015
    Publication date: October 8, 2015
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky
  • Patent number: 9076716
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: July 7, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky
  • Publication number: 20150083607
    Abstract: A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution comprising hydroxide and carbonate/bicarbonate ions, utilizing carbon dioxide in a cathode compartment that is partitioned into a first cathode electrolyte compartment and a second cathode electrolyte compartment such that liquid flow between the cathode electrolyte compartments is possible, but wherein gaseous communication to between the cathode electrolyte compartments is restricted. Carbon dioxide gas in one cathode electrolyte compartment is utilized with the cathode electrolyte in both compartments to produce the base solution with less that 3V applied across the electrodes.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 26, 2015
    Inventors: RYAN J. GILLIAM, THOMAS A. ALBRECHT, NIKHIL JALANI, NIGEL A. KNOTT, VALENTIN DECKER, MICHAEL Kostowskyj, BRYAN BOGGS, ALEXANDER GORER, KASRA FARSAD
  • Patent number: 8894830
    Abstract: A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution comprising hydroxide and carbonate/bicarbonate ions, utilizing carbon dioxide in a cathode compartment that is partitioned into a first cathode electrolyte compartment and a second cathode electrolyte compartment such that liquid flow between the cathode electrolyte compartments is possible, but wherein gaseous communication between the cathode electrolyte compartments is restricted. Carbon dioxide gas in one cathode electrolyte compartment is utilized with the cathode electrolyte in both compartments to produce the base solution with less that 3V applied across the electrodes.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 25, 2014
    Assignee: Celera Corporation
    Inventors: Ryan J. Gilliam, Thomas A. Albrecht, Nikhil Jalani, Nigel Antony Knott, Valentin Decker, Michael Kostowskyj, Bryan Boggs, Alexander Gorer, Kasra Farsad
  • Patent number: 8836123
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: September 16, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 8816317
    Abstract: Non-volatile resistive-switching memories formed using anodization are described. A method for forming a resistive-switching memory element using anodization includes forming a metal containing layer, anodizing the metal containing layer at least partially to form a resistive switching metal oxide, and forming a first electrode over the resistive switching metal oxide. In some examples, an unanodized portion of the metal containing layer may be a second electrode of the memory element.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: August 26, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Alexander Gorer, Tony P. Chiang, Igor Ivanov, Prashant B. Phatak
  • Publication number: 20140230955
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky, Thomas H. McWaid
  • Patent number: 8776717
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: July 15, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Thomas H. McWaid, Alexander Gorer
  • Patent number: 8697606
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 15, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Publication number: 20140070213
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 13, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky
  • Patent number: 8610121
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: December 17, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky
  • Publication number: 20130331296
    Abstract: The embodiments describe a system for combinatorial processing of a substrate. In one embodiment, electrodeposition processing techniques are combinatorially evaluated. The system is capable of providing a localized electrical connection to each region of a substrate being combinatorially processed. The localized electrical contacts allow for varying a voltage delivered to each region of a substrate whether processing the regions in serial or parallel. Accordingly, from a single substrate, a variety of materials, process conditions, and process sequences may be evaluated for desired electrodeposition results.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Alexander Gorer, Tony Chiang
  • Patent number: 8580090
    Abstract: Combinatorial electrochemical deposition is described, including dividing a wafer into a plurality of substrates for combinatorial processing, immersing the plurality of substrates at least partially into a plurality of cells, within one integrated tool, including electrolytes, the cells also including electrodes immersed in the electrolytes, depositing layers on the substrates by applying potentials across the substrates and the electrodes, and varying characteristics of the depositing to perform the combinatorial processing.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 12, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Alexander Gorer, Zhi-Wen Sun
  • Patent number: 8389445
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: March 5, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Thomas R. Boussie, Alexander Gorer, David E. Lazovsky