Patents by Inventor Alexander H. Nickel

Alexander H. Nickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140124848
    Abstract: The present claimed subject matter is directed to memory device that includes substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: SPANSION LLC
    Inventors: Minh Q. TRAN, Minh-Van NGO, Alexander H. NICKEL, Jeong-Uk HUH
  • Publication number: 20140061714
    Abstract: A light emitting diode (LED) structure (10) has semiconductor layers, including a p-type layer, an active layer, and an n-type layer. The p-type layer has a bottom surface, and the n-type layer has a top surface through which light is emitted. Portions of the p-type layer and active layer are etched away to expose the n-type layer. The surface of the LED is patterned with a photoresist, and copper is plated over the exposed surfaces to form p and n electrodes electrically contacting their respective semi-conductor layers. There is a gap between the n and p electrodes. To provide mechanical support of the semiconductor layers between the gap, a dielectric layer (34) is formed in the gap followed by filling the gap with a metal (42). The metal is patterned to form stud bumps (40, 42, 44) that substantially cover the bottom surface of the LED die, but do not short the electrodes. The substantially uniform coverage supports the semiconductor layer during subsequent process steps.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 6, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Jipu Lei, Yajun Wei, Alexander H. Nickel, Stefano Schiafino, Daniel Alexander Steigerwald
  • Patent number: 8633074
    Abstract: The present memory device includes a substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric. A method for fabricating such a memory device is also provided, including various approaches for forming the silicon oxynitride.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 21, 2014
    Assignee: Spansion LLC
    Inventors: Minh Q. Tran, Minh-Van Ngo, Alexander H. Nickel, Jeong-Uk Huh
  • Patent number: 8202810
    Abstract: A method for forming a single damascene and/or dual damascene, contact and interconnect structure, comprising: performing front end processing, depositing copper including a copper barrier, annealing the copper in at least 90% N2 with less than 10% H2, performing planarization, performing in-situ low-H NH3 plasma treatment and low Si—H SiN etch stop layer deposition, and performing remaining back end processing.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: June 19, 2012
    Assignee: Spansion LLC
    Inventors: Alexander H. Nickel, Allen L. Evans, Minh Quoc Tran, Lu You, Minh Van Ngo, Pei-Yuan Gao, William S. Brennan, Erik Wilson, Sung Jin Kim, Hieu Trung Pham
  • Publication number: 20100123178
    Abstract: An ultraviolet light absorbent silicon oxynitride layer overlies a memory cell including a pair of source/drains, a gate insulator, a floating gate, a dielectric layer, and a control gate. A conductor is disposed through the silicon oxynitride layer for electrical connection to the control gate, and another conductor is disposed through the silicon oxynitride layer for electrical connection to a source/drain.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Inventors: Minh Q. Tran, Minh-Van Ngo, Alexander H. Nickel, Sung Jin Kim, Simon Chan, Ning Cheng
  • Publication number: 20100065901
    Abstract: The present memory device includes a substrate, a tunneling layer over the substrate, a floating gate over the tunneling layer, a dielectric over the floating gate and including silicon oxynitride, and a control gate over the dielectric. A method for fabricating such a memory device is also provided, including various approaches for forming the silicon oxynitride.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: Minh Q. Tran, Minh-Van Ngo, Alexander H. Nickel, Jeong-Uk Huh
  • Publication number: 20090176369
    Abstract: A method for forming a single damascene and/or dual damascene, contact and interconnect structure, comprising: performing front end processing, depositing copper including a copper barrier, annealing the copper in at least 90% N2 with less than 10% H2, performing planarization, performing in-situ low-H NH3 plasma treatment and low Si—H SiN etch stop layer deposition, and performing remaining back end processing.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 9, 2009
    Inventors: Alexander H. Nickel, Allen L. Evans, Minh Quoc Tran, Lu You, Minh Van Ngo, Pei-Yuan Gao, William S. Brennan, Eric Wilson, Sung Jin Kim, Hieu Trung Pham
  • Patent number: 6936925
    Abstract: The present invention relates to the semiconductor device fabrication industry. More particularly a semiconductor device, having an interim reduced-oxygen Cu—Zn alloy thin film (30) electroplated on a blanket Cu surface (20) disposed in a via (6) by electroplating, using an electroplating apparatus, the Cu surface (20) in a unique chemical solution containing salts of Zn and Cu, their complexing agents, a pH adjuster, and surfactants; and annealing the interim electroplated Cu—Zn alloy thin film (30); filling the via (6) with further Cu (26); annealing and planarizing the interconnect structure (35).
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: August 30, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel
  • Patent number: 6811671
    Abstract: A method of fabricating a semiconductor device, having a reduced-oxygen Cu—Zn alloy thin film (30) electroplated on a Cu surface (20) by electroplating, using an electroplating apparatus, the Cu surface (20) in a unique chemical solution containing salts of zinc (Zn) and copper (Cu), their complexing agents, a pH adjuster, and surfactants; and annealing the electroplated Cu—Zn alloy thin film (30); and a semiconductor device thereby formed. The method controls the parameters of pH, temperature, and time in order to form a uniform reduced-oxygen Cu—Zn alloy thin film (30), having a controlled Zn content, for reducing electromigration on the Cu—Zn/Cu structure by decreasing the drift velocity therein which decreases the Cu migration rate in addition to decreasing the void formation rate, for improving device reliability, and for increasing corrosion resistance.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 2, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel, Joffre F. Bernard
  • Patent number: 6717236
    Abstract: A method of reducing electromigration in a dual-inlaid copper interconnect line (3) by filling a via (6) with a Cu-rich Cu—Zn alloy (30) electroplated on a Cu surface (200 from a stable chemical solution, and by controlling the Zn-doping thereof, which also improves interconnect reliability and corrosion resistance, and a semiconductor device thereby formed. The method involves using a reduced-oxygen Cu—Zn alloy as fill (30) for the via (6) in forming the dual-inlaid interconnect structure (35). The alloy fill (30) is formed by electroplating the Cu surface (20) in a unique chemical solution containing salts of Zn and Cu, their complexing agents, a pH adjuster, and surfactants, thereby electroplating the fill (30) on the Cu surface (20); and annealing the electroplated Cu—Zn alloy fill (30); and planarizing the Cu—Zn alloy fill (30), thereby forming the dual-inlaid copper interconnect line (35).
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: April 6, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel, Paul L. King
  • Patent number: 6660633
    Abstract: A method of fabricating a semiconductor device, having an interim reduced-oxygen Cu-Zn alloy thin film (30) electroplated on a blanket Cu surface (20) disposed in a via (6) by electroplating, using an electroplating apparatus, the Cu surface (20) in a unique chemical solution containing salts of Zn and Cu, their complexing agents, a pH adjuster, and surfactants; and annealing the interim electroplated Cu—Zn alloy thin film (30); filling the via (6) with further Cu (26); annealing and planarizing the interconnect structure (35); and a semiconductor device thereby formed.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: December 9, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel
  • Patent number: 6624075
    Abstract: A method of reducing electromigration in copper interconnect lines by restricting Cu-diffusion pathways along a Cu surface via doping the Cu surface with Zn from an interim copper-zinc alloy (Cu—Zn) thin film electroplated on the copper (Cu) surface from a stable chemical solution, and controlling the Zn-doping thereof, which also improves interconnect reliability and corrosion resistance, and a semiconductor device thereby formed. The method involves using interim reduced-oxygen Cu—Zn alloy thin films for forming an encapsulated dual-inlaid interconnect structure. The films are formed by electroplating a Cu surface via by electroplating, the Cu surface in a unique chemical solution containing salts of Zn and Cu, their complexing agents, a pH adjuster, and surfactants; and annealing the interim electroplated Cu—Zn alloy thin films and a Cu-fill; and planarizing the interconnect structure.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: September 23, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel
  • Patent number: 6528424
    Abstract: A method of fabricating a semiconductor device, having a Cu-rich Cu—Zn alloy thin film (30) formed on a cathode-wafer such as a Cu surface (20) by electroplating, using an electroplating apparatus, the Cu surface (20) in a unique chemical solution containing salts of zinc (Zn) and copper (Cu), their complexing agents, a pH adjuster, and surfactants; and a semiconductor device thereby formed. The method controls the parameters of pH, temperature, and time in order to form a uniform Cu-rich Cu—Zn alloy thin film (30) for reducing electromigration on the cathode-wafer by decreasing the drift velocity therein which decreases the Cu migration rate in addition to decreasing the void formation rate, for improving device reliability, and for increasing corrosion resistance.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: March 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel
  • Patent number: 6515368
    Abstract: A method of reducing electromigration in copper interconnect lines by restricting Cu-diffusion pathways along a Cu surface via doping the Cu surface with Zn from an interim copper-zinc alloy (Cu—Zn) thin film electroplated on the copper (Cu) surface from a stable chemical solution, and controlling the Zn-doping thereof, which also improves interconnect reliability and corrosion resistance, and a semiconductor device thereby formed. The method involves using interim reduced-oxygen Cu—Zn alloy thin films for forming an encapsulated dual-inlaid interconnect structure. The films are formed by electroplating a Cu surface via by electroplating, the Cu surface in a unique chemical solution containing salts of Zn and Cu, their complexing agents, a pH adjuster, and surfactants; and annealing the interim electroplated Cu—Zn alloy thin films and a Cu-fill; and planarizing the interconnect structure.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: February 4, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Alexander H. Nickel
  • Patent number: 6479879
    Abstract: In providing a bottom antireflective coating (BARC) in a semiconductor structure, a primer layer, for example, hexamethyldisilazane (HMDS), is provided on a substrate, and the BARC is formed on the primer. This results in a substantially defect free BARC layer, having a more uniform reflectivity which in turn leads to improve to photolithographic pattern resolution.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: November 12, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Christopher Lee Pike, Alexander H. Nickel