Patents by Inventor Alexander Henstra

Alexander Henstra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150041647
    Abstract: An environmental transmission electron microscope (ETEM) suffers from gas-induced resolution deterioration. Inventors conclude that the deterioration is due to ionization of gas in the sample chamber of the ETEM, and propose to use an electric field in the sample chamber to remove the ionized gas, thereby diminishing the gas-induced resolution deterioration. The electric field need not be a strong field, and can be caused by, for example, biasing the sample with respect to the sample chamber. A bias voltage of 100 V applied via voltage source is sufficient for a marked improvement the gas-induced resolution deterioration. Alternatively an electric field perpendicular to the optical axis can be used, for example by placing an electrically biased wire or gauze off-axis in the sample chamber.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 12, 2015
    Applicant: FEI Company
    Inventors: Peter Christiaan Tiemeijer, Stan Johan Pieter Konings, Alexander Henstra
  • Patent number: 8884245
    Abstract: The invention describes a corrector for the correction of chromatic aberrations in a particle lens, such as used in a SEM or a TEM. So as to reduce the stability demands on the power supplies of such a corrector, the energy with which the particle beam passes through the corrector is lower than the energy with which the beam passes through the lens to be corrected.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: November 11, 2014
    Assignee: FEI Company
    Inventors: Alexander Henstra, Michael Ross Scheinfein
  • Patent number: 8841630
    Abstract: Commercially available High Resolution Transmission Electron Microscopes (HR-TEM) and Scanning Transmission Electron Microscopes (HR-STEM) are nowadays equipped with correctors for correcting the axial spherical aberration Cs of the so-named objective lens. Inevitably other aberrations become the limiting aberration. For the hexapole type correctors, also known as Rose correctors, or variants thereof, six-fold axial astigmatism, also known as A5, and sixth-order three lobe aberration, also known as D6, introduced by the corrector, are known to become the limiting aberration. The invention shows that by adding a weak hexapole (126) in the cross-over between the hexapoles, a Rose like corrector or a Crewe like corrector free of A5 or D6 can be made, or, by adding both the weak hexapole and a dodecapole, a corrector that is free of both A5 and D6.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: September 23, 2014
    Assignee: Fei Company
    Inventor: Alexander Henstra
  • Patent number: 8710452
    Abstract: A charged particle filter with an integrated energy filter, in which the charged particle emitter, the focusing electrodes, and the deflection electrodes are arranged round a straight axis. Where most energy filters used have a highly curved optical axis, and thus use parts with forms that are difficult to manufacture, the source according the invention uses electrodes surrounding a straight optical axis. A beam of charged particles can be deflected quite far from the axis showing respectable energy dispersion at an energy selecting slit without introducing coma or astigmatism that cannot be corrected, provided that some of the are formed as 120°/60°/120°/60°. Such electrodes can be attached to each other by gluing or brazing of ceramic, and then series of a highly concentric bores can be formed by, e.g., spark erosion.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 29, 2014
    Assignee: Fei Company
    Inventor: Alexander Henstra
  • Publication number: 20140103225
    Abstract: The invention relates to a charged-particle microscope comprising a charged-particle source; a sample holder; a charged-particle lens system; a detector; and a beam pulsing device, for causing the beam to repeatedly switch on and off so as to produce a pulsed beam. The beam pulsing device comprises a unitary resonant cavity disposed about a particle-optical axis and has an entrance aperture and an exit aperture for the beam. The resonant cavity is configured to simultaneously produce a first oscillatory deflection of the beam at a first frequency in a first direction and a second oscillatory deflection of the beam at a second, different frequency in a second, different direction. The resonant cavity may have an elongated (e.g. rectangular or elliptical) cross-section, with a long axis parallel to said first direction and a short axis parallel to said second direction.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 17, 2014
    Applicant: FEI Company
    Inventors: Erik René Kieft, Fredericus Bernardus Kiewiet, Adam Christopher Lassise, Otger Jan Luiten, Petrus Henricus Antonius Mutsaers, Edgar Jan Dirk Vredenbregt, Alexander Henstra
  • Patent number: 8598542
    Abstract: Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate. The beam preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: December 3, 2013
    Assignee: FEI Company
    Inventors: Milos Toth, Richard J. Young, Alexander Henstra, Alan Frank de Jong, Johannes Jacobus Lambertus Mulders
  • Patent number: 8569693
    Abstract: A charged particle apparatus is equipped with a third stigmator positioned between the objective lens and a detector system, as a result of which a third degree of freedom is created for reducing the linear distortion. Further, a method of using said three stigmators, comprises exciting the first stigmator to reduce astigmatism when imaging the sample, exciting the second stigmator to reduce astigmatism when imaging the diffraction plane, and exciting the third stigmator to reduce the linear distortion.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 29, 2013
    Assignee: FEI Company
    Inventors: Maarten Bischoff, Alexander Henstra, Uwe Luecken, Peter Christiaan Tiemeijer
  • Patent number: 8461525
    Abstract: A particle source in which energy selection occurs by sending a beam of electrically charged particles eccentrically through a lens so that energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit in an energy selecting diaphragm, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam will have a reduced energy spread. The energy dispersed spot is imaged on the slit by a deflector. When positioning the energy dispersed spot on the slit, central beam is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm. Hereby reflections and contamination resulting from this beam in the region after the diaphragm are avoided. Also electron-electron interaction resulting from the electrons from the central beam interacting with the energy filtered beam in the area of deflector is avoided.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 11, 2013
    Assignee: FEI Company
    Inventor: Alexander Henstra
  • Publication number: 20130062520
    Abstract: A charged particle apparatus is equipped with a third stigmator positioned between the objective lens and a detector system, as a result of which a third degree of freedom is created for reducing the linear distortion. Further, a method of using said three stigmators, comprises exciting the first stigmator to reduce astigmatism when imaging the sample, exciting the second stigmator to reduce astigmatism when imaging the diffraction plane, and exciting the third stigmator to reduce the linear distortion.
    Type: Application
    Filed: April 13, 2012
    Publication date: March 14, 2013
    Applicant: FEI Company
    Inventors: Alexander Henstra, Maarten Bischoff, Uwe Luecken, Peter Christiaan Tiemeijer
  • Publication number: 20120112090
    Abstract: A charged particle filter with an integrated energy filter, in which the charged particle emitter, the focusing electrodes, and the deflection electrodes are arranged round a straight axis. Where most energy filters used have a highly curved optical axis, and thus use parts with forms that are difficult to manufacture, the source according the invention uses electrodes surrounding a straight optical axis. A beam of charged particles can be deflected quite far from the axis showing respectable energy dispersion at an energy selecting slit without introducing coma or astigmatism that cannot be corrected, provided that some of the are formed as 120°/60°/120°/60°. Such electrodes can be attached to each other by gluing or brazing of ceramic, and then series of a highly concentric bores can be formed by, e.g., spark erosion.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 10, 2012
    Applicant: FEI COMPANY
    Inventor: Alexander Henstra
  • Publication number: 20110284763
    Abstract: A particle source in which energy selection occurs by sending a beam of electrically charged particles eccentrically through a lens so that energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit in an energy selecting diaphragm, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam will have a reduced energy spread. The energy dispersed spot is imaged on the slit by a deflector. When positioning the energy dispersed spot on the slit, central beam is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm. Hereby reflections and contamination resulting from this beam in the region after the diaphragm are avoided. Also electron-electron interaction resulting from the electrons from the central beam interacting with the energy filtered beam in the area of deflector is avoided.
    Type: Application
    Filed: August 4, 2011
    Publication date: November 24, 2011
    Applicant: FEI COMPANY
    Inventor: Alexander Henstra
  • Patent number: 7999225
    Abstract: The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 103 eccentrically through a lens 107. As a result of this, energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit 109 in an energy selecting diaphragm 108, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 113 will have a reduced energy spread. Deflection unit 112 deflects the beam to the optical axis 101. One can also elect to deflect a beam 105 going through the middle of the lens toward the optical axis and having, for example, greater current. The energy dispersed spot is imaged on the slit by a deflector 111. When positioning the energy dispersed spot on the slit, central beam 105 is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: August 16, 2011
    Assignee: FEI Company
    Inventor: Alexander Henstra
  • Publication number: 20110114852
    Abstract: Commercially available High Resolution Transmission Electron Microscopes (HR-TEM) and Scanning Transmission Electron Microscopes (HR-STEM) are nowadays equipped with correctors for correcting the axial spherical aberration Cs of the so-named objective lens. Inevitably other aberrations become the limiting aberration. For the hexapole type correctors, also known as Rose correctors, or variants thereof, six-fold axial astigmatism, also known as A5, and sixth-order three lobe aberration, also known as D6, introduced by the corrector, are known to become the limiting aberration. The invention shows that by adding a weak hexapole (126) in the cross-over between the hexapoles, a Rose like corrector or a Crewe like corrector free of A5 or D6 can be made, or, by adding both the weak hexapole and a dodecapole, a corrector that is free of both A5 and D6.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 19, 2011
    Applicant: FEI COMPANY
    Inventor: Alexander Henstra
  • Publication number: 20100224592
    Abstract: Electron-beam-induced chemical reactions with precursor gases are controlled by adsorbate depletion control. Adsorbate depletion can be controlled by controlling the beam current, preferably by rapidly blanking the beam, and by cooling the substrate. The beam preferably has a low energy to reduce the interaction volume. By controlling the depletion and the interaction volume, a user has the ability to produce precise shapes.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 9, 2010
    Applicant: FEI COMPANY
    Inventors: MILOS TOTH, Richard J. Young, Alexander Henstra, Alan Frank de Jong, Johannes Jacobus Lambertus Mulders
  • Publication number: 20090289195
    Abstract: The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 103 eccentrically through a lens 107. As a result of this, energy dispersion will occur in an image formed by the lens. By projecting this image onto a slit 109 in an energy selecting diaphragm 108, it is possible to allow only particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 113 will have a reduced energy spread. Deflection unit 112 deflects the beam to the optical axis 101. One can also elect to deflect a beam 105 going through the middle of the lens toward the optical axis and having, for example, greater current. The energy dispersed spot is imaged on the slit by a deflector 111. When positioning the energy dispersed spot on the slit, central beam 105 is deflected from the axis to such an extent that it is stopped by the energy selecting diaphragm.
    Type: Application
    Filed: May 26, 2009
    Publication date: November 26, 2009
    Applicant: FEI COMPANY
    Inventor: Alexander Henstra
  • Publication number: 20080290264
    Abstract: The invention describes a corrector for the correction of chromatic aberrations in a particle lens, such as used in a SEM or a TEM. So as to reduce the stability demands on the power supplies of such a corrector, the energy with which the particle beam passes through the corrector is lower than the energy with which the beam passes through the lens to be corrected.
    Type: Application
    Filed: November 1, 2006
    Publication date: November 27, 2008
    Applicant: FEI Company
    Inventors: Alexander Henstra, Michael Ross Scheinfein
  • Patent number: 7378667
    Abstract: Quadrupole-octupole aberration corrector for application in a TEM, STEM or SEM. A known corrector for correcting third-order and fifth-order aberrations of the objective is embodied with eight quadrupoles and three octupoles. The corrector according to the invention has at least the same aberration-correcting power, but, according to the invention, is embodied with six quadrupoles and three octupoles. By adding octupoles with a relatively weak excitation to a portion of the quadrupoles, correction of the anisotropic coma of the objective lens is also attained. By embodying all quadrupoles, or a portion thereof, to be electromagnetic, chromatic aberrations can also be corrected for.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 27, 2008
    Assignee: FEI Company
    Inventor: Alexander Henstra
  • Publication number: 20060219935
    Abstract: Quadrupole-octupole aberration corrector for application in a TEM, STEM or SEM. A known corrector for correcting third-order and fifth-order aberrations of the objective is embodied with eight quadrupoles and three octupoles. The corrector according to the invention has at least the same aberration-correcting power, but, according to the invention, is embodied with six quadrupoles and three octupoles. By adding octupoles with a relatively weak excitation to a portion of the quadrupoles, correction of the anisotropic coma of the objective lens is also attained. By embodying all quadrupoles, or a portion thereof, to be electromagnetic, chromatic aberrations can also be corrected for.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 5, 2006
    Applicant: FEI Company
    Inventor: Alexander Henstra
  • Patent number: 7034315
    Abstract: The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 13 eccentrically through a lens 6. As a result of this, energy dispersion will occur in an image 15 formed by the lens 6. By projecting this image 15 onto a diaphragm 7, it is possible to only allow particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 16 will have a reduced energy spread. By adding a deflection unit 10, this particle beam 16 can be deflected toward the optical axis 2. One can also elect to deflect a beam 12 going through the middle of the lens 6—and having, for example, greater current—toward the optical axis.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 25, 2006
    Assignee: FEI Company
    Inventors: Alexander Henstra, Jaroslav Chmelik
  • Publication number: 20050178982
    Abstract: The invention describes a particle source in which energy selection occurs. The energy selection occurs by sending a beam of electrically charged particles 13 eccentrically through a lens 6. As a result of this, energy dispersion will occur in an image 15 formed by the lens 6. By projecting this image 15 onto a diaphragm 7, it is possible to only allow particles in a limited portion of the energy spectrum to pass. Consequently, the passed beam 16 will have a reduced energy spread. By adding a deflection unit 10, this particle beam 16 can be deflected toward the optical axis 2. One can also elect to deflect a beam 12 going through the middle of the lens 6—and having, for example, greater current—toward the optical axis.
    Type: Application
    Filed: February 15, 2005
    Publication date: August 18, 2005
    Applicant: FEI Company
    Inventors: Alexander Henstra, Jaroslav Chmelik